Projectile motion of a cannon ball versus time

Click For Summary
SUMMARY

The discussion focuses on calculating the time and coordinates for a cannonball launched at a 45° angle with an initial velocity of 300 m/s to hit a horizontally moving airplane traveling at -100 m/s, starting 7000 m away at a height of 500 m. The calculations reveal that the cannonball reaches the height of the airplane at approximately 2.5 seconds, while the total time to impact is calculated to be 64.7 seconds. The analysis also highlights the existence of multiple solutions for the time of launch, emphasizing the importance of considering both rising and falling trajectories of the cannonball.

PREREQUISITES
  • Understanding of projectile motion equations
  • Knowledge of trigonometric functions, specifically sine and cosine
  • Familiarity with quadratic equations and their solutions
  • Basic principles of relative motion in physics
NEXT STEPS
  • Study the derivation of projectile motion equations in detail
  • Learn about the implications of multiple solutions in projectile motion scenarios
  • Explore graphical representations of projectile trajectories
  • Investigate real-world applications of cannonball trajectories and aerial intercepts
USEFUL FOR

Physics students, educators, and anyone interested in understanding projectile motion dynamics, particularly in scenarios involving moving targets.

Archimedess
Messages
23
Reaction score
0

Homework Statement


A cannon is inclined about the horizontal by an angle of 45° and it launches projectiles with initial velocity of ##v_p=300m/s##. A small airplane moves horizontally with a constant velocity of ##-100m/s##(so it is directed to the cannon) at high of ##500m##. If at ##t=0s##, the position of the airplane is ##7000m## away from the cannon, determine:

a) the time of which the projectile must be launch to hit the airplane.
b) what are the coordinates of the impact? at what time?

Homework Equations



The result of point a) is wrong, I don't understand why?

The Attempt at a Solution


starting with b)

From the system:
$$y=y_0+v_0sin(45°)-1/2gt^2$$
$$x=x_0+v_0cos(45°)$$

I found:
$$t=2.5s$$ and $$x=531m$$

so, the total time is $$t=\frac{x_(impact)-x_(airplane)}{v_(airplane)}64.7s$$

point a)

this should be ##64.7s-2.5s=62.2## because ##2.5s## is the time of the projectile to reach the coordinates ##(531m,500m)##.
Thanks for helping..
 
Last edited:
Physics news on Phys.org
Archimedess said:

Homework Statement


A cannon is inclined about the horizontal by an angle of 45° and it launches projectiles with initial velocity of ##v_p=300m/s##. A small airplane moves horizontally with a constant velocity of ##-100m/s##(so it is directed to the cannon) at high of ##500m##. If at ##t=0s##, the position of the airplane is ##7000m## away from the cannon, determine:

a) the time of which the projectile must be launch to hit the airplane.
b) what are the coordinates of the impact? at what time?

Homework Equations



The result of point a) is wrong, I don't understand why?

The Attempt at a Solution


starting with b)

From the system:
$$y=y_0+v_0sin(45°)-1/2gt^2$$
$$x=x_0+v_0cos(45°)$$

I found:
$$t=2.5s$$ and $$x=531m$$

so, the total time is $$t=\frac{x_(impact)-x_(airplane)}{v_(airplane)}64.7s$$

point a)

this should be ##64.7s-2.5s=62.2## because ##2.5s## is the time of the projectile to reach the coordinates ##(531m,500m)##.Thanks for helping..

Let the cannon be located at (0,0) and the plane start from ##(-L,H) = (-7000,500)## at time ##t=0##. (Here I am supposing that distances and velocities to the right are positive and to the left are negative.) If the cannon fires to the left at time ##t_0##, what are the cannonball coordinates ##(x_c(t), y_c(t))## at a time ##t > t_0?## What are the airplane coordinates ##(x_p(t),y_p(t)## at time ##t > 0?## At the collision point/time you need ##(x_c(t),y_c(t)) = (x_p(t),y_p(t)),## and that gives two equations for the two unknowns ##t## and ##t_0.##

There are two roots for ##t_0## and ##t##; what are their physical meanings?

How would you do the question if the cannon fires to the right, so the cannonball chases a plane that has already past?
 
Archimedess said:

Homework Statement


A cannon is inclined about the horizontal by an angle of 45° and it launches projectiles with initial velocity of ##v_p=300m/s##. A small airplane moves horizontally with a constant velocity of ##-100m/s##(so it is directed to the cannon) at high of ##500m##. If at ##t=0s##, the position of the airplane is ##7000m## away from the cannon, determine:

a) the time of which the projectile must be launch to hit the airplane.
b) what are the coordinates of the impact? at what time?

Homework Equations



The result of point a) is wrong, I don't understand why?

The Attempt at a Solution


starting with b)

From the system:
$$y=y_0+v_0sin(45°)-1/2gt^2$$
$$x=x_0+v_0cos(45°)$$

I found:
$$t=2.5s$$ and $$x=531m$$

so, the total time is $$t=\frac{x_(impact)-x_(airplane)}{v_(airplane)}64.7s$$

point a)

this should be ##64.7s-2.5s=62.2## because ##2.5s## is the time of the projectile to reach the coordinates ##(531m,500m)##.
Thanks for helping..
I don't see anything wrong with your solution other than typos. Since this equation ##
y=y_0+v_0tsin(45°)-1/2gt^2
## is quadratic, there is another possible solution.
 
Ray Vickson said:
Let the cannon be located at (0,0) and the plane start from ##(-L,H) = (-7000,500)## at time ##t=0##. (Here I am supposing that distances and velocities to the right are positive and to the left are negative.) If the cannon fires to the left at time ##t_0##, what are the cannonball coordinates ##(x_c(t), y_c(t))## at a time ##t > t_0?## What are the airplane coordinates ##(x_p(t),y_p(t)## at time ##t > 0?## At the collision point/time you need ##(x_c(t),y_c(t)) = (x_p(t),y_p(t)),## and that gives two equations for the two unknowns ##t## and ##t_0.##

There are two roots for ##t_0## and ##t##; what are their physical meanings?

How would you do the question if the cannon fires to the right, so the cannonball chases a plane that has already past?

Sorry if the problem was unclear but the planes starts at ##(L,H) = (7000,500)##

tnich said:
I don't see anything wrong with your solution other than typos. Since this equation ##
y=y_0+v_0tsin(45°)-1/2gt^2
## is quadratic, there is another possible solution.

Ok, so I guess the solutions were wrong.
I'd exclude ##t_2## since it's about ##40s##..
 
Archimedess said:
Sorry if the problem was unclear but the planes starts at ##(L,H) = (7000,500)##
Ok, so I guess the solutions were wrong.
I'd exclude ##t_2## since it's about ##40s##..

You were not unclear. I took the plane to be flying from west to east and the cannon pointing west. You are taking the plane flying from east to west and the cannon pointing east. Neither of us is wrong, but whatever convention you use ought to be spelled out explicitly.
 
Archimedess said:
Sorry if the problem was unclear but the planes starts at ##(L,H) = (7000,500)##
Ok, so I guess the solutions were wrong.
I'd exclude ##t_2## since it's about ##40s##..
I don't see anything wrong with 40.7s. Why would you exclude it?
 
Archimedess said:
Sorry if the problem was unclear but the planes starts at ##(L,H) = (7000,500)##
Ok, so I guess the solutions were wrong.
I'd exclude ##t_2## since it's about ##40s##..

There are two legitimate solutions. As I asked you in #2, can you explain the physical meanings of the two solutions? To enhance your understanding, try to give plots of the airplane and cannonball orbits in the two cases.
 
Ray Vickson said:
There are two legitimate solutions. As I asked you in #2, can you explain the physical meanings of the two solutions? To enhance your understanding, try to give plots of the airplane and cannonball orbits in the two cases.

Well, I guess ##t_2## is the time it takes to reach the maximum heigh and come back to ##500m## before it drops into the terrain. Since the total time is about ##42.5s-40s=2.5s##.
 
Archimedess said:
Well, I guess ##t_2## is the time it takes to reach the maximum heigh and come back to ##500m## before it drops into the terrain. Since the total time is about ##42.5s-40s=2.5s##.

Right. So the cannonball can hit the plane while it (the cannonball) is rising, or it can hit the plane while it is falling. That is why I suggested you draw pictures.
 
  • #10
Archimedess said:
Since the total time is about ##42.5s-40s=2.5s##.
Wait, the time for the cannonball to reach a height of 500m (the second time) is 40.7s, right? So what do 42.5s and 2.5s represent in this equation?
If the intersection of the trajectories is at 40.7s, what is the horizontal distance traveled by the cannonball at that point? How does that compare to the initial distance of the airplane from the cannon?
 
  • #11
Archimedess said:
Ok, so I guess the solutions were wrong.
I'm not sure that is true. You haven't investigated all of the solutions, yet. I have found four potential solutions and you have only looked at one of them so far.
 
  • #12
tnich said:
I'm not sure that is true. You haven't investigated all of the solutions, yet. I have found four potential solutions and you have only looked at one of them so far.

Four? If I choose the second option, which is ##40s## the projectile will completely miss the airplane.. what are the other 2 solution?
 
  • #13
Archimedess said:
Four? If I choose the second option, which is ##40s## the projectile will completely miss the airplane.. what are the other 2 solution?
The ones where the aircraft is flying west and the cannon is pointing west.
 
  • #14
tnich said:
I don't see anything wrong with 40.7s. Why would you exclude it?

In 40.7 seconds the cannonball will have traveled nearly 8500m "down range" - so unless the plane is moving away from the cannon it could never be there, no matter how fast it is flying.
 
  • #15
Thanks so much for the help and your time guys btw..
 
  • #16
PeterO said:
In 40.7 seconds the cannonball will have traveled nearly 8500m "down range" - so unless the plane is moving away from the cannon it could never be there, no matter how fast it is flying.
Once the plane flies over the cannon, it would be flying away from it. Before you completely reject this as a possible solution, consider that this kind of "tail chase" is a tactic used in real situations.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 15 ·
Replies
15
Views
26K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
25
Views
3K