MHB Projection Matrix Calculation for Vectors a_k: P_6P_5P_4P_3P_2P_1a_0

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Projection
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ?

Hey mathmari!

What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)
 
Klaas van Aarsen said:
What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)

Yes, that is what I meant, I didn't use the correct symbols. (Blush) So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*} (Wondering)
 
mathmari said:
So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*}

Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$
 
Klaas van Aarsen said:
Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$

Ahh ok! I see! Thanks a lot! (Blush)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top