MHB Projection Matrix Calculation for Vectors a_k: P_6P_5P_4P_3P_2P_1a_0

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Projection
Click For Summary
SUMMARY

The discussion focuses on the calculation of the projection matrix product \(P_6P_5P_4P_3P_2P_1a_0\) for vectors defined as \(a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}\) for \(k=0, 1, \ldots, 6\). The projection matrix \(P_k\) is defined as \(P_k(x) = (x\cdot a_k)a_k\), with elements given by \((P_k)_{ij} = a_{k,i} a_{k,j}\). The final result of the projection calculation is \(\begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\), confirming the correctness of the approach taken by the participants.

PREREQUISITES
  • Understanding of vector projection concepts
  • Familiarity with matrix multiplication
  • Knowledge of trigonometric functions and their properties
  • Basic linear algebra, specifically projection matrices
NEXT STEPS
  • Study the derivation of projection matrices in linear algebra
  • Learn about the geometric interpretation of vector projections
  • Explore the properties of orthogonal projections in higher dimensions
  • Investigate applications of projection matrices in data science and machine learning
USEFUL FOR

Mathematicians, students studying linear algebra, data scientists, and anyone interested in understanding vector projections and their applications in various fields.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ?

Hey mathmari!

What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)
 
Klaas van Aarsen said:
What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)

Yes, that is what I meant, I didn't use the correct symbols. (Blush) So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*} (Wondering)
 
mathmari said:
So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*}

Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$
 
Klaas van Aarsen said:
Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$

Ahh ok! I see! Thanks a lot! (Blush)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
31
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K