MHB Proof: G/H1 is Isomorphic to H2/K for G with Normal Subgroups H1 and H2

Poirot1
Messages
243
Reaction score
0
Let
G be a group with normal subgroups H1 and H2 with H2 not a subset of H1. Let K = H1 intersect H2.


Show that if G/H1 is simple, then G/H1 is isomorphic to H2/K.


My first thought was to set up a homomorphism with K as the kernel but soon realized that the fact that H2 was not normal is H1 scuppered this tactic. G/H1 being simple implies that H1 is the largest proper normal subgroup but where to go from there?



 
Physics news on Phys.org
Just realized that my last sentence is incorrect. G/H1 being simple means there is no normal subgroup A of G which H1 is normal in.
 
The quotient map $\pi:G\to G/H_1$ maps $H_2$ to a normal subgroup of $G/H_1$. This normal subgroup contains more than just the identity element, so by simplicity it must be the whole of $G/H_1$. Now show that the kernel of the homomorphism $\pi|_{H_2}$ is equal to $K$.
 
Opalg said:
The quotient map $\pi:G\to G/H_1$ maps $H_2$ to a normal subgroup of $G/H_1$. This normal subgroup contains more than just the identity element, so by simplicity it must be the whole of $G/H_1$. Now show that the kernel of the homomorphism $\pi|_{H_2}$ is equal to $K$.

Ah, my first ideas were correct.
 
Back
Top