MHB Proof of Bland's Example 13: Simple Modules and Quotients of Maximal Modules

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Chapter 1, Section 1.4 Modules ... ...

I need help with the proving a statement Bland makes in Example 13 ... ...

Example 13 reads as follows:View attachment 6387In the above text from Bland, we read the following:

" ... If $$N$$ is a maximal submodule of $$M$$, then it follows that $$M/N$$ is a simple $$R$$-module ... ... "I do not understand why this is true ... can anyone help with a formal proof of this statement ...
Hope someone can help ...

Peter
 
Physics news on Phys.org
Let $\Sigma$ be a submodule of $M/N$. It must be shown that $\Sigma$ is either zero or the whole module $M/N$. Its pre-image $S$ under the natural projection $M\to M/N$ is a submodule of $M$ containing $N$. Maximality of $N$ implies $S = N$ or $S = M$. If $S = N$, then $\Sigma$ is zero; if $S = M$, then $\Sigma = M/N$.
 
Euge said:
Let $\Sigma$ be a submodule of $M/N$. It must be shown that $\Sigma$ is either zero or the whole module $M/N$. Its pre-image $S$ under the natural projection $M\to M/N$ is a submodule of $M$ containing $N$. Maximality of $N$ implies $S = N$ or $S = M$. If $S = N$, then $\Sigma$ is zero; if $S = M$, then $\Sigma = M/N$.

Thanks for the help, Euge ...

But ... can you help a bit further ...

You write:

" ... ... Its pre-image $S$ under the natural projection $M\to M/N$ is a submodule of $M$ containing $N$. ... ... "Can you explain why this is true ... can you indicate how this is proved ...

Peter
 
You actually learned this already from the lattice isomorphism theorem. Let $\pi$ denote the natural projection. The module $N$ is contained in $S$, for if $n\in N$, then $\pi(n) = 0\in \Sigma$. Therefore $n\in \pi^{-1}(\Sigma) = S$. Since $n$ was arbitrary, $S$ contains $N$.
 
[TIKZ]n[/TIKZ]
Euge said:
You actually learned this already from the lattice isomorphism theorem. Let $\pi$ denote the natural projection. The module $N$ is contained in $S$, for if $n\in N$, then $\pi(n) = 0\in \Sigma$. Therefore $n\in \pi^{-1}(\Sigma) = S$. Since $n$ was arbitrary, $S$ contains $N$.
Thanks Euge ... appreciate your help ...

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top