Proof of Positive Definite Matrices: Symmetric & 2x2 w/Tr & Det

  • Thread starter Thread starter qaz
  • Start date Start date
  • Tags Tags
    Matrices Proof
qaz
Messages
7
Reaction score
0
(i) Let A=A' be an nxn symmetric matrix with distinct eigenvalues la1, la2, ..., lan. Suppose that all eigenvalues lai > 0. Prove that A is positive definite: That is, prove that z'Az > 0 whenever z ne 0. (Hint: Consider the spectral decomposition of A.)

?

(ii) Let A=A' be a 2x2 symmetric matrix with tr(A)>0 and det(A)>0. Prove that A is positive definite. (Hint: Consider the spectral decomposition of A.)

?

i looked at this problem forever, nothing doing for me :cry: :confused:
 
Physics news on Phys.org
anyone? please help!
 
What is the definition of spectral decomposition (and no, I'm not asking out of ignorance)?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top