Proof that given function is convex

Click For Summary

Homework Help Overview

The discussion revolves around proving the convexity of a given function, specifically focusing on the properties of norms and the application of inequalities in the context of convex functions. Participants are examining the steps involved in the proof and the necessary conditions for establishing convexity.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the structure of the proof, questioning the necessity of certain steps and the clarity of the argument. Some express confusion regarding the treatment of cross terms in the context of convexity, while others suggest that the proof could be more explicit in its initial conditions.

Discussion Status

The discussion is ongoing, with participants providing feedback on each other's contributions. Some have offered clarifications and insights into the proof's structure, while others are still grappling with specific aspects of the argument. There is a general sense of collaboration as participants seek to deepen their understanding of the proof.

Contextual Notes

Some participants note their background in physics and their efforts to transition into more rigorous mathematical reasoning, which may influence their interpretations of the proof's requirements and structure.

PhDeezNutz
Messages
851
Reaction score
561
Homework Statement
Given ##f: \mathbb{R}^n \rightarrow \mathbb{R}## where ##f\left(\vec{x}\right) = \| \vec{x} \|^2## prove that ##f## is convex
Relevant Equations
Definition of convex function

A function ##f: \mathcal{C} \subset \mathbb{R}^n \rightarrow \mathbb{R}## is convex on convex set ##\mathcal{C}## if ## \forall \vec{x}, \vec{y} \in \mathcal{C}##

##f\left(\left( 1 - \lambda \right) \vec{x} + \lambda \vec{y} \right) \leq \left( 1 - \lambda \right) f \left(\vec{x} \right) + \lambda f \left( y \right)##

where ##\lambda \in \left[ 0,1 \right]##

Also the triangle inequality

## \left\| \vec{a} + \vec{b} \right\|^2 \leq \left\| \vec{a} \right\|^2 + \left\| \vec{b} \right\|^2##
Part 1

##\left\| \vec{y} \right\|^2 \leq \left\| \vec{y} \right\|^2## and since ##\lambda \in \left[ 0,1 \right] \Rightarrow \lambda^2 \leq \lambda##

So

##\lambda^2 \left\| \vec{y} \right\|^2 \leq \lambda \left\| \vec{y} \right\|^2 ##

Part 2

##\left\| \vec{x} \right\|^2 \leq \left\| \vec{x} \right\|^2## and since ##\lambda \in \left[ 0,1 \right] ## we have ##1 - \lambda \leq 1 \Rightarrow \left( 1 - \lambda \right)^2 \leq \left( 1 - \lambda \right)##

So

##\left( 1 - \lambda \right)^2 \left\| \vec{x} \right\|^2 \leq \left(1 - \lambda \right) \left\| \vec{x} \right\|^2##

Part 3 (adding Parts 1 and 2)

##\left( 1 -\lambda \right)^2 \left\| \vec{x} \right\|^2 + \lambda^2 \left\| \vec{y} \right\|^2 \leq \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 + \lambda \left\| \vec{y} \right\|^2##

Part 4 (Invoking the triangle inequality)

##\left\| \left(1 - \lambda \right) \vec{x} + \lambda \vec{y} \right\|^2 \leq \left( 1 -\lambda \right)^2 \left\| \vec{x} \right\|^2 + \lambda^2 \left\| \vec{y} \right\|^2 \leq \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 + \lambda \left\| \vec{y} \right\|^2##Taking the first and last part of the above inequality we have

##\left\| \left(1 - \lambda \right) \vec{x} + \lambda \vec{y} \right\|^2 \leq \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 + \lambda \left\| \vec{y} \right\|^2##

Therefore ##f\left(\vec{x}\right) = \left\| \vec{x} \right\|^2## is convex
 
Physics news on Phys.org
Looks okay to me. The steps are all there. Technically, the proof should start with "Let ##\lambda \in [0, 1]## and ##\vec x, \vec y \in \mathbb R^n##" and show explicitly that $$f\left(\left( 1 - \lambda \right) \vec{x} + \lambda \vec{y} \right) \leq \left( 1 - \lambda \right) f \left(\vec{x} \right) + \lambda f \left( \vec y \right)$$
 
  • Love
Likes   Reactions: PhDeezNutz
PeroK said:
Looks okay to me. The steps are all there. Technically, the proof should start with "Let ##\lambda \in [0, 1]## and ##\vec x, \vec y \in \mathbb R^n##" and show explicitly that $$f\left(\left( 1 - \lambda \right) \vec{x} + \lambda \vec{y} \right) \leq \left( 1 - \lambda \right) f \left(\vec{x} \right) + \lambda f \left( \vec y \right)$$
You'll have to forgive me I am but a filthy physics major :-p. I'm starting to self [URL='https://www.physicsforums.com/insights/self-study-basic-high-school-mathematics/']study mathematics[/URL] because there were some parts of grad school that seemed extremely hand wavy to me. I'll have to learn proof etiquette.

Thank you for reviewing my proof.
 
  • Like
Likes   Reactions: PeroK
  • Like
Likes   Reactions: PhDeezNutz
532CAC02-805F-401B-B57A-65A81C2A24F2.jpeg


I’m trying to follow this proof of ##x^4## being strictly convex but I don’t understand how they got rid of the cross terms with step ##\left( 2 \right)##
 
PhDeezNutz said:
View attachment 293510

I’m trying to follow this proof of ##x^4## being strictly convex but I don’t understand how they got rid of the cross terms with step ##\left( 2 \right)##
The cross terms are non-negative.
 
  • Like
Likes   Reactions: PhDeezNutz
PeroK said:
The cross terms are non-negative.

I’m confused. To me that is precisely the reason we can’t get rid of them in the end. Let me be more explicit.

##\left\| \lambda \vec{x} + \left( 1 - \lambda \right)\vec{y} \right\|^4 = \left( \left\| \lambda \vec{x} \left( 1 - \lambda \right) \vec{y} \right\|^2 \right)^2 \leq \left( \lambda \left\| \vec{x}\right\|^2 + \left(1 - \lambda \right) \left\| \vec{y} \right\|^2 \right)^2##

Where I've used the fact that ##\left\| \vec{x} \right\|^2 ## is convex to get to the ##/leq## inequality

To me the only thing I can do now is "foil it out"

## = \lambda^2 \left\| \vec{x} \right\|^4 + 2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 + \left( 1 - \lambda \right)^2 \left\| \vec{y} \right\|^4##

We know that both ##\lambda , \left(1 - \lambda \right) \lt 1 \Rightarrow \lambda^2 , \left( 1 - \lambda \right)^2 \lt \lambda, 1 - \lambda ##

## \lt \lambda \left\| \vec{x} \right\|^4 + 2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 + \left( 1 - \lambda \right) \left\| \vec{y} \right\|^4##

So all in all

##\left\| \lambda \vec{x} + \left( 1 - \lambda \right) \right\|^4 \lt \lambda \left\| \vec{x} \right\|^4 + 2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 + \left( 1 - \lambda \right) \left\| \vec{y} \right\|^4 ##

Don't know how to get rid of the middle cross term ##2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2##
 
You're right. They are simply applying the convex property of ##x^2## twice. There's no expansion needed.
 
  • Like
Likes   Reactions: PhDeezNutz
PS It's cometimes easier to generalise things. Suppose ##f: \mathbb R_+ \rightarrow \mathbb R_+## is convex and increasing, then ##f \circ f## is convex and increasing:

Let ##t \in [0, 1]## and ##x, y \in \mathbb R_+##. We have:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \ \ (\text{as} \ f \ \text{is convex})$$$$\Rightarrow \ f[f(tx + (1-t)y)] \le f[tf(x) + (1-t)f(y)] \ \ (\text{as} \ f \ \text{is increasing})$$ $$\le tf[f(x)] + (1-t)f[f(y)] \ \ (\text{as} \ f \ \text{is convex and} \ f(x), f(y) \in \mathbb R_+)$$$$\therefore f \circ f(tx + (1-t)y) \le tf \circ f(x) + (1-t)f \circ f(y)$$$$\therefore f \circ f \ \text{is convex}$$It's easy to show that ##f \circ f## in increasing, although not a bad exercise, in fact.
 
  • Love
Likes   Reactions: PhDeezNutz
  • #10
PeroK said:
You're right. They are simply applying the convex property of ##x^2## twice. There's no expansion needed.
I actually see it now. Wow this has confused me for several days.All we needed to do was make a change of variables

##\left\| \vec{x} \right\|^2 \mapsto X \in \mathbb{R} ##

##\left\| \vec{y} \right\|^2 \mapsto Y \in \mathbb{R} ##

and repeat the argument and replace ##X## and ##Y## at the end.

Can't believe I didn't see it until now. Thank you for your help.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K