Proof that given function is convex

Click For Summary
SUMMARY

The discussion centers on the proof of convexity for the function \( f(\vec{x}) = \|\vec{x}\|^2 \). Participants detail the steps required to demonstrate that \( f \) satisfies the convexity condition, specifically showing that \( f((1 - \lambda) \vec{x} + \lambda \vec{y}) \leq (1 - \lambda) f(\vec{x}) + \lambda f(\vec{y}) \) for \( \lambda \in [0, 1] \) and vectors \( \vec{x}, \vec{y} \in \mathbb{R}^n \). The proof involves using properties of norms and inequalities, including the triangle inequality and the non-negativity of cross terms. Participants also discuss the importance of proof etiquette in mathematical writing.

PREREQUISITES
  • Understanding of vector norms and properties in \( \mathbb{R}^n \)
  • Familiarity with convex functions and their definitions
  • Knowledge of mathematical inequalities, particularly the triangle inequality
  • Basic proof techniques in mathematics, including induction and direct proof
NEXT STEPS
  • Study the properties of convex functions in optimization contexts
  • Learn about the triangle inequality and its applications in proofs
  • Explore the concept of convex combinations and their significance in convexity proofs
  • Investigate the implications of convexity in higher-dimensional spaces and related functions
USEFUL FOR

Mathematics students, particularly those studying analysis or optimization, as well as educators and researchers interested in the properties of convex functions and their applications in various fields.

PhDeezNutz
Messages
851
Reaction score
561
Homework Statement
Given ##f: \mathbb{R}^n \rightarrow \mathbb{R}## where ##f\left(\vec{x}\right) = \| \vec{x} \|^2## prove that ##f## is convex
Relevant Equations
Definition of convex function

A function ##f: \mathcal{C} \subset \mathbb{R}^n \rightarrow \mathbb{R}## is convex on convex set ##\mathcal{C}## if ## \forall \vec{x}, \vec{y} \in \mathcal{C}##

##f\left(\left( 1 - \lambda \right) \vec{x} + \lambda \vec{y} \right) \leq \left( 1 - \lambda \right) f \left(\vec{x} \right) + \lambda f \left( y \right)##

where ##\lambda \in \left[ 0,1 \right]##

Also the triangle inequality

## \left\| \vec{a} + \vec{b} \right\|^2 \leq \left\| \vec{a} \right\|^2 + \left\| \vec{b} \right\|^2##
Part 1

##\left\| \vec{y} \right\|^2 \leq \left\| \vec{y} \right\|^2## and since ##\lambda \in \left[ 0,1 \right] \Rightarrow \lambda^2 \leq \lambda##

So

##\lambda^2 \left\| \vec{y} \right\|^2 \leq \lambda \left\| \vec{y} \right\|^2 ##

Part 2

##\left\| \vec{x} \right\|^2 \leq \left\| \vec{x} \right\|^2## and since ##\lambda \in \left[ 0,1 \right] ## we have ##1 - \lambda \leq 1 \Rightarrow \left( 1 - \lambda \right)^2 \leq \left( 1 - \lambda \right)##

So

##\left( 1 - \lambda \right)^2 \left\| \vec{x} \right\|^2 \leq \left(1 - \lambda \right) \left\| \vec{x} \right\|^2##

Part 3 (adding Parts 1 and 2)

##\left( 1 -\lambda \right)^2 \left\| \vec{x} \right\|^2 + \lambda^2 \left\| \vec{y} \right\|^2 \leq \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 + \lambda \left\| \vec{y} \right\|^2##

Part 4 (Invoking the triangle inequality)

##\left\| \left(1 - \lambda \right) \vec{x} + \lambda \vec{y} \right\|^2 \leq \left( 1 -\lambda \right)^2 \left\| \vec{x} \right\|^2 + \lambda^2 \left\| \vec{y} \right\|^2 \leq \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 + \lambda \left\| \vec{y} \right\|^2##Taking the first and last part of the above inequality we have

##\left\| \left(1 - \lambda \right) \vec{x} + \lambda \vec{y} \right\|^2 \leq \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 + \lambda \left\| \vec{y} \right\|^2##

Therefore ##f\left(\vec{x}\right) = \left\| \vec{x} \right\|^2## is convex
 
Physics news on Phys.org
Looks okay to me. The steps are all there. Technically, the proof should start with "Let ##\lambda \in [0, 1]## and ##\vec x, \vec y \in \mathbb R^n##" and show explicitly that $$f\left(\left( 1 - \lambda \right) \vec{x} + \lambda \vec{y} \right) \leq \left( 1 - \lambda \right) f \left(\vec{x} \right) + \lambda f \left( \vec y \right)$$
 
  • Love
Likes   Reactions: PhDeezNutz
PeroK said:
Looks okay to me. The steps are all there. Technically, the proof should start with "Let ##\lambda \in [0, 1]## and ##\vec x, \vec y \in \mathbb R^n##" and show explicitly that $$f\left(\left( 1 - \lambda \right) \vec{x} + \lambda \vec{y} \right) \leq \left( 1 - \lambda \right) f \left(\vec{x} \right) + \lambda f \left( \vec y \right)$$
You'll have to forgive me I am but a filthy physics major :-p. I'm starting to self [URL='https://www.physicsforums.com/insights/self-study-basic-high-school-mathematics/']study mathematics[/URL] because there were some parts of grad school that seemed extremely hand wavy to me. I'll have to learn proof etiquette.

Thank you for reviewing my proof.
 
  • Like
Likes   Reactions: PeroK
  • Like
Likes   Reactions: PhDeezNutz
532CAC02-805F-401B-B57A-65A81C2A24F2.jpeg


I’m trying to follow this proof of ##x^4## being strictly convex but I don’t understand how they got rid of the cross terms with step ##\left( 2 \right)##
 
PhDeezNutz said:
View attachment 293510

I’m trying to follow this proof of ##x^4## being strictly convex but I don’t understand how they got rid of the cross terms with step ##\left( 2 \right)##
The cross terms are non-negative.
 
  • Like
Likes   Reactions: PhDeezNutz
PeroK said:
The cross terms are non-negative.

I’m confused. To me that is precisely the reason we can’t get rid of them in the end. Let me be more explicit.

##\left\| \lambda \vec{x} + \left( 1 - \lambda \right)\vec{y} \right\|^4 = \left( \left\| \lambda \vec{x} \left( 1 - \lambda \right) \vec{y} \right\|^2 \right)^2 \leq \left( \lambda \left\| \vec{x}\right\|^2 + \left(1 - \lambda \right) \left\| \vec{y} \right\|^2 \right)^2##

Where I've used the fact that ##\left\| \vec{x} \right\|^2 ## is convex to get to the ##/leq## inequality

To me the only thing I can do now is "foil it out"

## = \lambda^2 \left\| \vec{x} \right\|^4 + 2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 + \left( 1 - \lambda \right)^2 \left\| \vec{y} \right\|^4##

We know that both ##\lambda , \left(1 - \lambda \right) \lt 1 \Rightarrow \lambda^2 , \left( 1 - \lambda \right)^2 \lt \lambda, 1 - \lambda ##

## \lt \lambda \left\| \vec{x} \right\|^4 + 2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 + \left( 1 - \lambda \right) \left\| \vec{y} \right\|^4##

So all in all

##\left\| \lambda \vec{x} + \left( 1 - \lambda \right) \right\|^4 \lt \lambda \left\| \vec{x} \right\|^4 + 2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 + \left( 1 - \lambda \right) \left\| \vec{y} \right\|^4 ##

Don't know how to get rid of the middle cross term ##2 \lambda \left( 1 - \lambda \right) \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2##
 
You're right. They are simply applying the convex property of ##x^2## twice. There's no expansion needed.
 
  • Like
Likes   Reactions: PhDeezNutz
PS It's cometimes easier to generalise things. Suppose ##f: \mathbb R_+ \rightarrow \mathbb R_+## is convex and increasing, then ##f \circ f## is convex and increasing:

Let ##t \in [0, 1]## and ##x, y \in \mathbb R_+##. We have:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \ \ (\text{as} \ f \ \text{is convex})$$$$\Rightarrow \ f[f(tx + (1-t)y)] \le f[tf(x) + (1-t)f(y)] \ \ (\text{as} \ f \ \text{is increasing})$$ $$\le tf[f(x)] + (1-t)f[f(y)] \ \ (\text{as} \ f \ \text{is convex and} \ f(x), f(y) \in \mathbb R_+)$$$$\therefore f \circ f(tx + (1-t)y) \le tf \circ f(x) + (1-t)f \circ f(y)$$$$\therefore f \circ f \ \text{is convex}$$It's easy to show that ##f \circ f## in increasing, although not a bad exercise, in fact.
 
  • Love
Likes   Reactions: PhDeezNutz
  • #10
PeroK said:
You're right. They are simply applying the convex property of ##x^2## twice. There's no expansion needed.
I actually see it now. Wow this has confused me for several days.All we needed to do was make a change of variables

##\left\| \vec{x} \right\|^2 \mapsto X \in \mathbb{R} ##

##\left\| \vec{y} \right\|^2 \mapsto Y \in \mathbb{R} ##

and repeat the argument and replace ##X## and ##Y## at the end.

Can't believe I didn't see it until now. Thank you for your help.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K