Properties of ideal solenoid: postulates or derivations?

Click For Summary
SUMMARY

The discussion centers on the properties of an ideal solenoid, specifically its magnetic field characteristics as outlined in Gettys's Physics. It establishes that the magnetic field inside an ideal solenoid is constant and directed along the axis, with a magnitude of ##\mu_0 nI##, while the field outside is null. The participants debate whether these properties are mathematically derivable using the infinite loops model or if they are merely definitions of an ideal solenoid. A participant confirms that they have successfully proven the uniformity of the magnetic field inside an infinite solenoid using the Biot-Savart law, which also yields a null field outside.

PREREQUISITES
  • Understanding of Biot-Savart law and its applications
  • Familiarity with Ampère's circuital law
  • Knowledge of magnetic dipole moment and its calculation
  • Basic principles of complex variable analysis
NEXT STEPS
  • Study the derivation of the magnetic field using Biot-Savart law in detail
  • Explore the mathematical proof of Ampère's law from the Biot-Savart law
  • Learn about the implications of infinite loops in electromagnetic theory
  • Investigate complex variable analysis techniques relevant to electromagnetic fields
USEFUL FOR

Physics students, educators, and researchers interested in electromagnetism, particularly those focusing on solenoid properties and magnetic field calculations.

DavideGenoa
Messages
151
Reaction score
5
My text of physics, Gettys's, proves that the magnetic field on the axis of a solenoid, in whose loops, of linear density ##n## (i.e. there are ##n## loops per length unit), a current of intensity ##I## flows, has the same direction as the loops' moment of magnetic dipole and magnitude ##\mu_0 nI## by using the fact that the magnetic field on the axis of a loop, whose radius is ##R## and whose moment of magnetic dipole is ##\mathbf{m}## (with ##\|\mathbf{m}\|=I\pi R^2##), is$$\frac{\mu_0\mathbf{m}}{2\pi (d^2+R^2)^{3/2}}$$where ##d## is the distance from the centre of the loop, as we can calculate by starting from the Biot-Savart law. By considering the continuous layer of an infinite amount of loops composing the solenoid, with every loop flown though by an "infinesimal current" ##nI ds##, the magnitude of the magnetic field on the axis of the solenoid result is given by the integral $$\int_{-\infty}^{+\infty} \frac{\mu_0nIR^2}{2((x-s)^2+R^2)^{3/2}}ds.$$

Gettys's Physics says that an ideal solenoid has a constant magnetic field at any point inside and a null magnetic field outside.
In order to show (without mathematically proving it with rigour) that the field is constant inside the solenoid, the book uses intuitive arguments to say that its direction is the direction of the moment of magnetic dipole of the loops everywhere and uses Ampère's circuital law to measure its magnitude as ##\mu_0 nI##, but intuitive arguments are not mathematical proofs, of course, and, moreover, I have never found a mathematical proof of Ampère's law from the Biot-Savart law for a superficial distribution of current.

Are the constance of the field inside and its nullity outside mathematically derivable by using the infinite loops model or are they part of the definition of an ideal solenoid?
 
Physics news on Phys.org
DavideGenoa said:
My text of physics, Gettys's, proves that the magnetic field on the axis of a solenoid, in whose loops, of linear density ##n## (i.e. there are ##n## loops per length unit), a current of intensity ##I## flows, has the same direction as the loops' moment of magnetic dipole and magnitude ##\mu_0 nI## by using the fact that the magnetic field on the axis of a loop, whose radius is ##R## and whose moment of magnetic dipole is ##\mathbf{m}## (with ##\|\mathbf{m}\|=I\pi R^2##), is$$\frac{\mu_0\mathbf{m}}{2\pi (d^2+R^2)^{3/2}}$$where ##d## is the distance from the centre of the loop, as we can calculate by starting from the Biot-Savart law. By considering the continuous layer of an infinite amount of loops composing the solenoid, with every loop flown though by an "infinesimal current" ##nI ds##, the magnitude of the magnetic field on the axis of the solenoid result is given by the integral $$\int_{-\infty}^{+\infty} \frac{\mu_0nIR^2}{2((x-s)^2+R^2)^{3/2}}ds.$$

Gettys's Physics says that an ideal solenoid has a constant magnetic field at any point inside and a null magnetic field outside.
In order to show (without mathematically proving it with rigour) that the field is constant inside the solenoid, the book uses intuitive arguments to say that its direction is the direction of the moment of magnetic dipole of the loops everywhere and uses Ampère's circuital law to measure its magnitude as ##\mu_0 nI##, but intuitive arguments are not mathematical proofs, of course, and, moreover, I have never found a mathematical proof of Ampère's law from the Biot-Savart law for a superficial distribution of current.

Are the constance of the field inside and its nullity outside mathematically derivable by using the infinite loops model or are they part of the definition of an ideal solenoid?
I actually have proved by the Biot-Savart law that the field inside an infinite solenoid is uniform everywhere (and points in z-direction). It was a somewhat lengthy process setting up the integrals and it required complex variable analysis to evaluate the result. I would be happy to supply you with the details if you have further interest. The integrals also gave a null result outside the solenoid. Incidentally, Biot-Savart is an integral solution to ampere's law in differential form. Ampere's law in integral form is an alternative integral result using Stoke's theorem.
 
  • Like
Likes   Reactions: DavideGenoa
@Charles Link I heartily thank you! Of course I am interested! I study by myself and don't attend university courses yet, so I planned my studies in an order according to which I have studied some elements of complex analysis before elementary physics, and therefore I hope I will be able to follow your proof. Gettys's calculates the magnetic field generated by a loop only on its axis, while I think that we need the general expression for the magnetic field generated by a loop, which we should then integrate...
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
1K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K