(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [tex]X = C[0,1][/tex] under the metric [tex]d_{\infty}[/tex]. Let

[tex]

\begin{align*}

Y = \{ f \in C[0,1] : f(0) \ne 0 \}

\end{align*}

[/tex]

Prove that [tex]Y[/tex] is open in [tex](C[0,1], d_{\infty})[/tex].

2. Relevant equations

The formulae for [tex]d_{\infty}[/tex] is

[tex]

\begin{align*}

d_{\infty}(f,g) = \max_{0 \leq t \leq 1} |f(t) - g(t)|

\end{align*}

[/tex]

3. The attempt at a solution

For any [tex]f \in Y[/tex], which means [tex]f \in C[0,1] \wedge f(0) \ne 0[/tex], if

[tex]f[/tex] is an interior point of [tex]Y[/tex], then [tex]Y[/tex] is open in [tex](C[0,1],

d_{\infty})[/tex]. [tex]f[/tex] is an interior point if there is an [tex]\varepsilon

> 0[/tex] such that the neighborhood [tex]O_{\varepsilon}(f) \subseteq Y[/tex], meaning all [tex]g \in C[0,1][/tex] satisfying [tex]\displaystyle d_{\infty}(f,g)

= \max_{0 \leq t \leq 1} f(t) - g(t)| < \varepsilon[/tex] must

belong to [tex]Y[/tex], which says [tex]g(0) \ne 0[/tex]. Suppose to the contrary there

exists a [tex]g \in C[0,1][/tex] such that [tex]\displaystyle d_{\infty}(f,g) =

\max_{0 \leq t \leq 1} |f(t) - g(t)| < \varepsilon[/tex] and [tex]g(0) =

0[/tex]. Then [tex]|f(0) - g(0)| = |f(0)|

> 0[/tex] since [tex]f(0) \ne 0[/tex] and [tex]\displaystyle d_{\infty}(f,g) = \max_{0

\leq t \leq 1} f(t) - g(t)| \geq |f(0)|[/tex]. For [tex]\varepsilon

\leq |f(0)|[/tex] this results in a contradiction with the assumption

that [tex]d_{\infty}(f,g) < \varepsilon[/tex]. What about [tex]\varepsilon > |f(0)|[/tex]? Is this on the right track at all?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Prove open set in C[0,1] function space

**Physics Forums | Science Articles, Homework Help, Discussion**