(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [tex]||\cdot |[/tex]| denote any norm on [tex]\mathbb{C}^m[/tex]. The corresponding dual norm [tex]||\cdot ||'[/tex] is defined by the formula [tex]||x||^=sup_{||y||=1}|y^*x|[/tex].

Prove that [tex]||\cdot ||'[/tex] is a norm.

2. Relevant equations

I think the Hölder inequality is relevant: [tex]|x^*y|\leq ||x||_p ||y||_q, 1/p+1/q=1[/tex] with [tex]1\leq p, q\leq\infty[/tex]

3. The attempt at a solution

Since a norm is a function satisfying three properties, I need to show that they hold.

(1) [tex]||x||'=0[/tex] if and only if [tex]x=0[/tex].

(2) [tex]||\alpha x||'=|\alpha| ||x||^[/tex].

(3) [tex]||x+z||'\leq ||x||^+||z||^[/tex].

I manage to do (1) and (2) just fine, but the triangle inequality (3) is giving me problems.

I use the Hölder inequality to get the following:

[tex]||x+z||'=sup_{||y||=1}|y^*(x+z)|\leq ||y|| ||x+z||=||x+z||[/tex]

[tex]||x||'=sup_{||y||=1}|y^*x|\leq ||y|| ||x|| =||x||[/tex]

[tex]||z||'=sup_{||y||=1}|y^*z|\leq ||y|| ||z|| =||z||[/tex]

(1) [tex]||x||'\leq ||x||[/tex]

(2) [tex]||z||'\leq ||z||[/tex]

(3) [tex]||x||'+||z||' \leq ||x||+||z||[/tex]

I also know that

(4) [tex]||x+z|| \leq ||x||+||z||[/tex]

I am unable to show that [tex]||x+z||\leq ||x||'+||z||'[/tex] which I think I must if I am to prove the triangle inequality.

Any help is appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Prove that the dual norm is in fact a norm

**Physics Forums | Science Articles, Homework Help, Discussion**