Prove that the given inverse trigonometry equation is correct

Click For Summary

Homework Help Overview

The discussion revolves around proving the correctness of an inverse trigonometry equation involving arctangents, arcsines, and arccosines. The participants explore relationships between these functions and their geometric interpretations.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss various approaches to relate the angles defined by inverse trigonometric functions and evaluate their tangents. Some express uncertainty about specific trigonometric identities and seek clarification on the derivation of certain values.

Discussion Status

There are multiple lines of reasoning being explored, with some participants providing alternative methods and others questioning the steps taken. Guidance has been offered regarding the verification of the equation through tangent identities, but no explicit consensus has been reached.

Contextual Notes

Some participants mention using right triangles and Pythagorean theorem to derive relationships, while others suggest using Weierstraß substitutions. There is an indication of differing approaches to the same problem, reflecting the complexity of the topic.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached.
Relevant Equations
Trigonometry
1694082442229.png
Ok in my approach i have,

##2 \tan^{-1} \left(\dfrac{1}{5}\right)= \sin^{-1} \left(\dfrac{3}{5}\right) - \cos^{-1} \left(\dfrac{63}{65}\right)##Consider the rhs,

Let

##\sin^{-1} \left(\dfrac{3}{5}\right)= m## then ##\tan m =\dfrac{3}{4}##

also

let

##\cos^{-1} \left(\dfrac{63}{65}\right)= n## then ##\tan n=\dfrac{16}{63}##

Then,

##m-n=\tan^{-1} \left[\dfrac{\frac{3}{4}-\frac{16}{63}}{1+\dfrac{3}{4}⋅\dfrac{16}{63}}\right]##

##m-n=\tan^{-1}\left[\dfrac{\frac{125}{252}}{\frac{300}{252}}\right]##

##m-n=\tan^{-1}\left[\dfrac{125}{252}×\dfrac{252}{300}\right]##

##m-n= \tan^{-1}\left(\dfrac{5}{12}\right) = 22.6^0## to one decimal place.

on the lhs, we let

##2 \tan^{-1} \left(\dfrac{1}{5}\right) = p##

##\tan^{-1} \left(\dfrac{1}{5}\right)=\dfrac{p}{2}##

##\tan \dfrac{p}{2}=\dfrac{1}{5}##

let ##\dfrac{p}{2} = θ##

##\tan θ = \dfrac{1}{5}##

##θ = \tan^{-1} \left(\dfrac{1}{5}\right) = 11.3^0##

##p= 2 ×11.3=22.6^0##

I hope this has been done correctly, ... otherwise, your correction is welcome...there may be a better approach.
 
Last edited by a moderator:
Physics news on Phys.org
From rectangle triangles
\cos^{-1}\frac{63}{65}=\tan^{-1}\frac{16}{63}
\sin^{-1}\frac{3}{5}=\tan^{-1}\frac{3}{4}
Then evaluate tan of
\tan^{-1}\frac{16}{63}+\tan^{-1}\frac{1}{5}
and tan of
\tan^{-1}\frac{3}{4}-\tan^{-1}\frac{1}{5}
They coincide to be 11/23.
 
Last edited:
How do you get ##\tan(\sin^{-1}(3/5))=3/4##?

I would use the Weierstraß substitutions and see whether I could solve the resulting polynomial equation.
 
fresh_42 said:
How do you get ##\tan(\sin^{-1}(3/5))=3/4##?

I would use the Weierstraß substitutions and see whether I could solve the resulting polynomial equation.
@fresh_42 I used trigonometry and Pythagoras theorem for that part...
 
fresh_42 said:
How do you get ##\tan(\sin^{-1}(3/5))=3/4##?
Using a 3-4-5 right triangle and some basic right triangle trig.
 
@chwala, your work is OK but could be improved.

The original equation is equivalent to this one:
##2 \tan^{-1} \left(\dfrac{1}{5}\right)= \sin^{-1} \left(\dfrac{3}{5}\right) - \cos^{-1} \left(\dfrac{63}{65}\right)##

Let ##\theta = \tan^{-1}(1/5), \alpha = \sin^{-1}(3/5), \beta = \cos^{-1}(63/65)##
Then the equation we're trying to verify can be written as ##2\theta = \alpha - \beta##

Take the tangent of both sides:
##\tan(2\theta) = \tan(\alpha - \beta)##
If we can verify that this is a true statement, we will have verified that the original equation is also a true statement.

With a bit of right-triangle trig and the use of the double-angle and difference of angles formulas for the tangent, the LHS of the equation just above equals 5/12, and the RHS equals the same value.

Comments
1. There is no need to find p (##2\tan^{-1}(1/5)##).
2. You have started several lines with "m - n = ..." You don't have to keep writing the left side of an equation -- instead, just continue the right side with = .
 
  • Like
Likes   Reactions: chwala, berkeman and jim mcnamara

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K