MHB Prove the lim n→∞ (1^1+2^2+3^3+....+(n−1)^(n−1)+n^n)/(n^n)=1.

  • Thread starter Thread starter lfdahl
  • Start date Start date
AI Thread Summary
The discussion centers on proving the limit of the sum of powers divided by n raised to the power of n as n approaches infinity. Participants express interest in exploring whether Riemann sums can be used to find this limit. The limit is proposed to equal 1, and participants encourage further exploration of this mathematical concept. A link to a related thread on Riemann sums is provided for additional insights. The conversation emphasizes collaboration and deeper investigation into the limit's proof.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove

$$\lim_{{n}\to{\infty}}\frac{1^1+2^2+3^3+...+(n-1)^{n-1}+n^n}{n^n} = 1.$$
 
Mathematics news on Phys.org
Call the limit $\ell$. Obviously $1 \leqslant \ell $. For any $n,k \in \mathbb{N}\setminus\left\{0\right\}$ s.t. $k \leqslant n$ we have $k^k \leqslant n^k$, so we have:

$\displaystyle 1 \leqslant \ell \leqslant \lim_{{n}\to{\infty}}\frac{n^1+n^2+n^3+...+(n-1)^{n-1}+n^n}{n^n} = \lim_{n \to \infty} \frac{1}{n^n} \cdot \frac{n^{n+1}-n}{n-1} =\lim_{n \to \infty} \frac{1- {1}/{n^{n}}}{1-1/n} = 1. $

Thus $\ell = 1$. (First equality is geometric series). I'd love to know if it can be done via Riemann sums.
 
Last edited:
June29 said:
Call the limit $\ell$. Obviously $1 \leqslant \ell $. For any $n,k \in \mathbb{N}\setminus\left\{0\right\}$ s.t. $k \leqslant n$ we have $k^k \leqslant n^k$, so we have:

$\displaystyle 1 \leqslant \ell \leqslant \lim_{{n}\to{\infty}}\frac{n^1+n^2+n^3+...+(n-1)^{n-1}+n^n}{n^n} = \lim_{n \to \infty} \frac{1}{n^n} \cdot \frac{n^{n+1}-n}{n-1} =\lim_{n \to \infty} \frac{1- {1}/{n^{n}}}{1-1/n} = 1. $

Thus $\ell = 1$. (First equality is geometric series). I'd love to know if it can be done via Riemann sums.
Thankyou, June29, for your participation. Well done!(Nod)

Maybe, we should continue this thread, and ask in the forum, if the limit can be found by means of Riemanns sums?
 
lfdahl said:
Thankyou, June29, for your participation. Well done!(Nod)

Maybe, we should continue this thread, and ask in the forum, if the limit can be found by means of Riemanns sums?

Thanks. I've finally got around to ask that question.

See https://mathhelpboards.com/calculus-10/sum-powers-limit-via-riemann-sums-23664.html
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top