Proving ##C## is constant in 4-dim ##R_{\mu\nu}=Cg_{\mu\nu}##

Click For Summary
The discussion revolves around proving that the constant C in the equation R_{\mu\nu} = Cg_{\mu\nu} is indeed a constant. By applying metric compatibility and the Ricci tensor in Einstein's equation, it is shown that the covariant derivative leads to the conclusion that C is constant. A different approach considers whether the form of R_{\mu\nu} implies that the manifold is maximally symmetric, noting that maximally symmetric spaces have constant Ricci scalars. The validity of this argument is questioned, particularly regarding the implications of the constant C and the notation used. Ultimately, the conversation clarifies that the constant C is unrelated to the speed of light.
crime9894
Messages
5
Reaction score
2
Homework Statement
Suppose for a certain 4-dimensional manifold, the Ricci tensor is given by ##R_{\mu}{\nu}=Cg_{\mu}{\nu}## .
Show C is constant (make necessary assumption)
Relevant Equations
Einstein's equation: ##R_{\mu\nu}-\frac{1}{2} Rg_{\mu\nu}=8\pi GT_{\mu\nu}##
This question wasn't particularly hard, so I assume metric compatibility and input Ricci tensor to the left side of Einstein's equation.
$$R_{\mu\nu}-\frac{1}{2} Rg_{\mu\nu}=Cg_{\mu\nu}-\frac{1}{2} (4C)g_{\mu\nu}=-Cg_{\mu\nu}$$
Then apply covariant derivative on both side:
$$\nabla^{\mu}(-Cg_{\mu\nu})=8\pi G\nabla^{\mu}T$$
From metric compatibility and conservation of energy-momentum tensor
$$\nabla_{\nu}C=0$$
Covariant derivative reduce to partial derivative when acted on scalar and thus conclude C is constant.

But now I thought of a different approach:
Maximally symmetric space has its Riemann tensor of the form:
$$R_{abcd}\propto g_{ac}g_{bd}-g_{ad}g_{bc}$$
Contracting both side once reduce it to Ricci tensor
$$R_{ab}\propto g_{ab}$$

So my question is: does it works the way around? Does ##R_{\mu\nu}## having the form ##Cg_{\mu\nu}## concludes the manifold is maximally symmetric?
Maximally symmetric space has constant Ricci scalar ##R## and contracting the Ricci tensor immediately yield desire conclusion.
But I'm not sure if such argument is valid at the first place
 
Last edited:
Physics news on Phys.org
What is C? Also, the notation doesn't seem to be working in LaTeX.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...