Proving ##C## is constant in 4-dim ##R_{\mu\nu}=Cg_{\mu\nu}##

crime9894
Messages
5
Reaction score
2
Homework Statement
Suppose for a certain 4-dimensional manifold, the Ricci tensor is given by ##R_{\mu}{\nu}=Cg_{\mu}{\nu}## .
Show C is constant (make necessary assumption)
Relevant Equations
Einstein's equation: ##R_{\mu\nu}-\frac{1}{2} Rg_{\mu\nu}=8\pi GT_{\mu\nu}##
This question wasn't particularly hard, so I assume metric compatibility and input Ricci tensor to the left side of Einstein's equation.
$$R_{\mu\nu}-\frac{1}{2} Rg_{\mu\nu}=Cg_{\mu\nu}-\frac{1}{2} (4C)g_{\mu\nu}=-Cg_{\mu\nu}$$
Then apply covariant derivative on both side:
$$\nabla^{\mu}(-Cg_{\mu\nu})=8\pi G\nabla^{\mu}T$$
From metric compatibility and conservation of energy-momentum tensor
$$\nabla_{\nu}C=0$$
Covariant derivative reduce to partial derivative when acted on scalar and thus conclude C is constant.

But now I thought of a different approach:
Maximally symmetric space has its Riemann tensor of the form:
$$R_{abcd}\propto g_{ac}g_{bd}-g_{ad}g_{bc}$$
Contracting both side once reduce it to Ricci tensor
$$R_{ab}\propto g_{ab}$$

So my question is: does it works the way around? Does ##R_{\mu\nu}## having the form ##Cg_{\mu\nu}## concludes the manifold is maximally symmetric?
Maximally symmetric space has constant Ricci scalar ##R## and contracting the Ricci tensor immediately yield desire conclusion.
But I'm not sure if such argument is valid at the first place
 
Last edited:
Physics news on Phys.org
What is C? Also, the notation doesn't seem to be working in LaTeX.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top