Proving ##C## is constant in 4-dim ##R_{\mu\nu}=Cg_{\mu\nu}##

Click For Summary
The discussion revolves around proving that the constant C in the equation R_{\mu\nu} = Cg_{\mu\nu} is indeed a constant. By applying metric compatibility and the Ricci tensor in Einstein's equation, it is shown that the covariant derivative leads to the conclusion that C is constant. A different approach considers whether the form of R_{\mu\nu} implies that the manifold is maximally symmetric, noting that maximally symmetric spaces have constant Ricci scalars. The validity of this argument is questioned, particularly regarding the implications of the constant C and the notation used. Ultimately, the conversation clarifies that the constant C is unrelated to the speed of light.
crime9894
Messages
5
Reaction score
2
Homework Statement
Suppose for a certain 4-dimensional manifold, the Ricci tensor is given by ##R_{\mu}{\nu}=Cg_{\mu}{\nu}## .
Show C is constant (make necessary assumption)
Relevant Equations
Einstein's equation: ##R_{\mu\nu}-\frac{1}{2} Rg_{\mu\nu}=8\pi GT_{\mu\nu}##
This question wasn't particularly hard, so I assume metric compatibility and input Ricci tensor to the left side of Einstein's equation.
$$R_{\mu\nu}-\frac{1}{2} Rg_{\mu\nu}=Cg_{\mu\nu}-\frac{1}{2} (4C)g_{\mu\nu}=-Cg_{\mu\nu}$$
Then apply covariant derivative on both side:
$$\nabla^{\mu}(-Cg_{\mu\nu})=8\pi G\nabla^{\mu}T$$
From metric compatibility and conservation of energy-momentum tensor
$$\nabla_{\nu}C=0$$
Covariant derivative reduce to partial derivative when acted on scalar and thus conclude C is constant.

But now I thought of a different approach:
Maximally symmetric space has its Riemann tensor of the form:
$$R_{abcd}\propto g_{ac}g_{bd}-g_{ad}g_{bc}$$
Contracting both side once reduce it to Ricci tensor
$$R_{ab}\propto g_{ab}$$

So my question is: does it works the way around? Does ##R_{\mu\nu}## having the form ##Cg_{\mu\nu}## concludes the manifold is maximally symmetric?
Maximally symmetric space has constant Ricci scalar ##R## and contracting the Ricci tensor immediately yield desire conclusion.
But I'm not sure if such argument is valid at the first place
 
Last edited:
Physics news on Phys.org
What is C? Also, the notation doesn't seem to be working in LaTeX.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
17
Views
2K
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K