MHB Proving Degrees of Vertices in Graph G

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Degrees Graph
Amer
Messages
259
Reaction score
0
The degree of every vertex of a graph G of order \[2n+1 \geq 5\] is either n+1 or n+2. Prove that G contains at least n+1 vertices of degree n+2 or at least n+2 vertex
 
Last edited:
Mathematics news on Phys.org
Is this question complete? It seems truncated.
 
The degree of every vertex of a graph G of order \[2n+1 \geq 5\] is either n+1 or n+2. Prove that G contains at least n+1 vertices of degree n+2 or at least n+2 vertex of degree n+1
 
Amer said:
The degree of every vertex of a graph G of order \[2n+1 \geq 5\] is either n+1 or n+2. Prove that G contains at least n+1 vertices of degree n+2 or at least n+2 vertices of degree n+1
Try using an argument by contradiction. Suppose that there are $x$ vertices of degree $n+1$, and $y$ vertices of degree $n+2$, and suppose that the result is false. Then $x\leqslant n+1$ and $y\leqslant n$. But $x+y=2n+1$. It follows that we must have $x=n+1$ and $y=n.$ By counting the number of edges in the graph, show that this leads to a contradiction.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top