IKonquer
- 47
- 0
I have very little experience with proofs, and I am trying to learn algebra on my own. The following problem is found within the text of Michael Artin's Algebra.
The first problem encountered was the following: Let A, B be n x n matrices. If both are invertible, then so is their product AB, and (AB)^{-1} = B^{-1}A^{-1}
To show this is true for the right inverse I said,
Let X be an invertible matrix.
<br /> \begin{flalign*}<br /> XX^{-1} = I\\<br /> (AB)(AB)^{-1} = I\\<br /> A(BB^{-1})A^{-1} = I \\<br /> AIA^{-1} = I\\<br /> AA^{-1} = I\\<br /> I = I\\<br /> \end{flalign*}<br />
Also the same can be said for the left inverse, which makes sense to me.
I'm having a lot of trouble understanding the following: If A_{1}, ... , A_{m} are invertible, then so is the product A_{1} ... A_{m} and its inverse is A_{m}^{-1} ... A_{1}^{-1}
Let m = 1
A_{1}A^{-1} = I
This shows that A_{1} is invertible, and its product, which is itself, is invertible.
For m + 1
Let A_{1}, ... , A_{m}, A_{m+1} be invertible matrices and let P be the product of A_{1}, ... , A_{m}.
"By the induction hypothesis, P is invertible." - I don't quite understand why you can say that. Could someone explain why this is true?
The first problem encountered was the following: Let A, B be n x n matrices. If both are invertible, then so is their product AB, and (AB)^{-1} = B^{-1}A^{-1}
To show this is true for the right inverse I said,
Let X be an invertible matrix.
<br /> \begin{flalign*}<br /> XX^{-1} = I\\<br /> (AB)(AB)^{-1} = I\\<br /> A(BB^{-1})A^{-1} = I \\<br /> AIA^{-1} = I\\<br /> AA^{-1} = I\\<br /> I = I\\<br /> \end{flalign*}<br />
Also the same can be said for the left inverse, which makes sense to me.
I'm having a lot of trouble understanding the following: If A_{1}, ... , A_{m} are invertible, then so is the product A_{1} ... A_{m} and its inverse is A_{m}^{-1} ... A_{1}^{-1}
Let m = 1
A_{1}A^{-1} = I
This shows that A_{1} is invertible, and its product, which is itself, is invertible.
For m + 1
Let A_{1}, ... , A_{m}, A_{m+1} be invertible matrices and let P be the product of A_{1}, ... , A_{m}.
"By the induction hypothesis, P is invertible." - I don't quite understand why you can say that. Could someone explain why this is true?