- 29,333
- 21,001
I must admit I've never heard of "pivot point" in linear algebra. You can show that ##B## is onto if it is one-to-one by using a basis for the vector space, ##V##, where ##B: V \to V## is a linear mapping.songoku said:I think I can show ##B## is onto but using pivot point. Since ##B## has pivot point on each row, ##B## is onto.
How to show it without using pivot?
Thanks
Let ##\{ e_1, e_2 \dots e_n\}## be a basis for V and consider ##\{ Be_1, Be_2 \dots Be_n\}##. By the linearity of ##B## we have:
$$a_1Be_1 + a_2Be_2 + \dots a_nBa_n = 0 \ \Rightarrow \ B(a_1e_1 + \dots + a_ne_n) = 0$$(And, as ##B## is one-to-one and the ##e_i## are linearly independent):
$$\Rightarrow \ a_1e_1 + \dots + a_ne_n = 0 \ \Rightarrow \ a_1 = a_2 \dots = a_n = 0$$This shows that the vectors ##Be_i## are linearly independent and hence a basis for ##V##.
Finally, if ##v \in V##, then for some scalars ##v_i##:
$$v = v_1Be_1 + \dots + v_nBe_n = B(v_1e_1 + \dots + v_ne_n)$$And, as ##v## was arbitrary, we see that ##B## is onto.