Proving Real 2x2 Matrices are a Vector Space

Click For Summary
All 2x2 matrices with real entries form a vector space under defined operations of matrix addition and scalar multiplication. To prove this, one must verify that the matrices satisfy the vector space axioms, which can be done by testing arbitrary values. The discussion highlights that each 2x2 matrix has four entries, suggesting a similarity to another vector space composed of vectors with four components, such as a single column matrix. This connection emphasizes the structural similarities between different vector spaces. Understanding these relationships is crucial for grasping the broader concepts in linear algebra.
dmitriylm
Messages
39
Reaction score
2

Homework Statement



Show that all 2 x 2 matrices with real entries:

M(2x2) = {
a b | a,b,c,d are real numbers}
c d |

is a vector space under the matrix addition:

|a1 b1| + | a2 b2| = |a1+a2 b1+b2|
|c1 d1| + | c2 d2| = |c1+c2 d1+d2|

and scalar multiplication:

r*| a b | = | ra rb |
r*| c d | = | rc rd |

This vector space is "similar" to another vector space. Can you comment on this?

*Ignore any silver text, its only used for formatting.

How would I go about proving this?
 
  • Like
Likes Sunusi
Physics news on Phys.org


I think I've actually got this figured out. I just test two 2x2 matrices of random values under the various axioms and if they pass then under matrix addition and scalar multiplication then it should show that all 2x2 matrices are a real vector space right?

What other kind of vector space is this similar to?
 
  • Like
Likes Sunusi


dmitriylm said:
I think I've actually got this figured out. I just test two 2x2 matrices of random values under the various axioms and if they pass then under matrix addition and scalar multiplication then it should show that all 2x2 matrices are a real vector space right?

What other kind of vector space is this similar to?

By "random" values, I think you really mean arbitrary values - in other words, unspecified values. Yes, that's the right approach. You'll need to verify all ten of the axioms (or 11 or whatever).

Each 2 x 2 matrix has four entries. Can you think of another vector space whose vectors have four values? I think this is where the book is leading you.
 


Would that be a single column matrix like:

[a]

[c]
[d]

?
 


Yes, that's where I think they're leading you.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K