shen07 said:
hi Guys, i Needed your help to prove out the following, thanks in advance;
Let u1,u2,...,ut be vectors in $\Re^n$ and $k\in\Re ,k\neq0.$ Prove that
$Span\{u_1,u_2,...,u_t\}=Span\{ku_1,u_2,...,u_t\}$
shen07 said:
i started working like this, hope you can help me further,
let $S=\{u_1,u_2,...,u_t\}\\\\\,S_k=\{ku_1,u_2,...,u_t\}$
then there exist Vector Spaces $V=L(S)\\\\\&\\\\W=L(S_k)$
Now let $v \in V,\alpha\in\Re$
$v=\alpha_1u_1+\alpha_2u_2+...+\alpha_tu_t$let $w \in W,\gamma\in\Re$
$w=\gamma_1(ku_1)+\gamma_2u_2+...+\gamma_tu_t$Now am i right by saying that since $k\in\Re,k\neq0\Rightarrow\\\alpha_1=\gamma_1k \Rightarrow\\v=w\Rightarrow\\\\L(S)=L(S_k)$
Hi shen07!
To prove that V and W are the same set, you should prove that any vector in V is also in W, and any vector in W is also in V.
Any vector in V can indeed be written as
$$v=\alpha_1u_1+\alpha_2u_2+...+\alpha_tu_t$$
Now is this vector v also in W?
We can rewrite it as:
$$v=\frac {\alpha_1}{k} (ku_1)+\alpha_2u_2+...+\alpha_tu_t$$
This is a linear combination of the basis of W, so yes, this vector is in W.Note that there is no need to introduce $w$, or $\gamma_i$ at this time.
But if you do, you can't just say that you already know that $\alpha_1=\gamma_1 k$.
What you could do, is say:
Pick $\gamma_1=\frac{\alpha_1}{k}$ and $\gamma_i=\alpha_i$ for $i \in \{2,...,n\}$.
Then $v=w$.Anyway, we're not completely done yet, since we still need to prove that any vector in W is also in V.
Well, any vector in W can be written as:
$$w=\gamma_1 (ku_1)+\gamma_2u_2+...+\gamma_tu_t$$
which is the same as:
$$w=(\gamma_1 k)u_1+\gamma_2u_2+...+\gamma_tu_t$$
Since this vector is a linear combination of the basis of V, it is indeed in V.
This completes the proof.