I Proving that the Lagrangian of a free particle is independent of q

AI Thread Summary
The discussion centers on proving that the Lagrangian of a free particle is independent of position and velocity, emphasizing its connection to translational invariance and Noether's theorem. The initial argument references Landau's assertion that the Lagrangian corresponds to conventional kinetic energy, though the details of this proof are seen as lacking. The poster suggests that by starting from Hamilton's principle, one can derive the invariance of the Lagrangian through symmetry transformations related to the Galilei group. They propose that the difference between Lagrangians under these transformations should yield a total time derivative, which is independent of velocity. The conversation highlights the need for a rigorous argument to establish these relationships clearly.
okaythanksbud
Messages
10
Reaction score
0
TL;DR Summary
Authors typically cite "symmetry" when allowing a Lagrangian to be independent of its position or direction, but how can we prove this?
One of the first things Landau does in his Mechanics book is give an argument as to why the Lagrangian of a free particle must be our conventional kinetic energy. Heuristically, he justifies it, but leaves out the details, perhaps being too obvious. They aren't obvious to me. While in free space we will see a particle travel in the same fashion regardless of when, where, and the angle we shoot it at, translating this to time, location, and directional independence seems like way too big of a leap.

If we start at Hamiltons principle and claim there to be a function/lagrangian capable of maximizing the action whenever we supply a path a free particle will take, Id imagine we should be able to use the previous claims to actually prove this invariance. For example, for any path q, translational invariance should allow us to say the integral of L(q+a, q',t) over a time interval is maximized for any value of a. If we assume L to be analytic in some region we should be able to argue d^k/dq^k L is also maximized. I dont know where to go from here but imagine one could produce a rigorous argument as to why we can say that L(q+a,q',t)-L(q,q',t) is 0 for any value of a. From the previous observation we can see that the difference should be a total time derivative, however I do not know how to show independence from q', and do not know if this would necessarily advance the argument. Any help is appreciated.
 
Physics news on Phys.org
The argument is based on Noether's theorem. A transformation
$$t'=t'(q,\dot{q},t), \quad q'=q'(q,\dot{q},t)$$
is called a symmetry transformation, if the Lagrangian wrt. the new time and configuration variables is an equivalent Lagrangian to the original one. That means that there is a function ##\Omega(q,t)## such that
$$\frac{\mathrm{d} t'}{\mathrm{d} t} L[q'(q,\dot{q},t),\dot{q}'(q,\dot{q},t),t']=L(q,\dot{q},t)+\frac{\mathrm{d}}{\mathrm{d} t} \Omega(q,t).$$
If you exploit this for the given symmetry group of Newtonian mechanics, i.e., the 10-parametric Galilei group (generated by time translations, spatial translations, rotations, and Galilei boosts) you get, for a single particle
$$L=\frac{m}{2} \dot{\vec{x}}^2$$
with Cartesian coordinates ##\vec{x}## for the particle's position, modulo an arbitrary function ##\Omega##, which is physically unimportant, because all these Lagrangians lead to the same equations of motion. In the case of a free particle of course that ##\ddot{\vec{x}}=\text{const}##. It is sufficient to consider "infinitesimal transformations" to derive this.

The detailed treatment is too long for a newsgroup posting. Unfortunately I have it only in my German manuscript on mechanics (Sect. 3.5):

https://itp.uni-frankfurt.de/~hees/publ/theo1-l3.pdf
 
  • Like
Likes PhDeezNutz and Dale
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...

Similar threads

Back
Top