Proving trigonometry identities

Click For Summary
The discussion revolves around proving trigonometric identities, with participants exploring different methods. One participant initially misapplies the identity sin²x + cos²x, which leads to confusion, but later corrects it to the difference of squares. The use of the identity cos(α + β) is highlighted as a helpful tool in the proof process. Participants clarify the correct application of trigonometric identities to reach the desired results. Overall, the conversation emphasizes the importance of accuracy in applying fundamental trigonometric identities.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
trigonometry concept
I was just looking at the problem below: there may be several ways to prove the identity:

question:
1626491496310.png


Mark scheme solution:

1626491538005.png


My take:
we may also use ##sin^{2}x+cos^{2}x≡(sin x+ cos x)(sin x-cosx)##...
we end up with(##\frac 2 {\sqrt{2}}##cos ∅)(##\frac 2 {\sqrt{2}}##sin ∅)=##2 sin ∅ cos ∅ ##= ##sin 2∅##
 
Last edited:
Physics news on Phys.org
The formula
cos(\alpha+\beta)=\cos\alpha cos\beta - \sin \alpha \sin \beta
is helpful.
 
anuttarasammyak said:
The formula
cos(\alpha+\beta)=\cos\alpha cos\beta - \sin \alpha \sin \beta
is helpful.
True, that's what I used...together with the one for sine...
 
chwala said:
My take:
we may also use ##sin^{2}x+cos^{2}x≡(sin x+ cos x)(sin x-cosx)##...
No, that's incorrect.
##\sin^2(x) + \cos^2(x) = 1##, for all x.
If you meant ##\sin^2(x) - \cos^2{x}##, that that does factor as you show above.
chwala said:
we end up with(##\frac 2 {\sqrt{2}}##cos ∅)(##\frac 2 {\sqrt{2}}##sin ∅)=##2 sin ∅ cos ∅ ##= ##sin 2∅##
 
Mark44 said:
No, that's incorrect.
##\sin^2(x) + \cos^2(x) = 1##, for all x.
If you meant ##\sin^2(x) - \cos^2{x}##, that that does factor as you show above.
yeah, true...i made a slight mistake there...it should be the difference of two squares, thanks mark...i.e
##[sin(∅+45)+cos(∅+45)]⋅[sin(∅+45)-cos(∅+45)]##
##[(sin ∅cos 45+cos ∅sin 45)+(cos ∅cos 45-sin ∅sin 45)]⋅
[(sin ∅cos 45+cos ∅sin 45)-(cos ∅cos 45-sin ∅sin 45)]##
thanks Mark cheers.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
2K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
12
Views
2K
Replies
3
Views
2K