Hi, Everybody know that eigenfunction of position operator x' is [itex] \delta(x-x') [/itex](adsbygoogle = window.adsbygoogle || []).push({});

But i also knew that integral of square of current state over entire space is 1(probability)

Then, [itex] \int_{-\infty}^{\infty}\delta(x-x')\delta(x-x')^{*} dx [/itex] is 1?

What is conjugate of [itex] \delta(x-x') [/itex]?

And i wandered whether negative energy exists. In classical mechanics, I know potential

energy can have negative sign such as product of electron(negative charge) and voltage.

If electron is at position which potential is larger and kinetic energy of electron, electron

can have negative energy.

Is it vaild in QM?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# [Q]eigenfunction of position operator and negative energy

Loading...

Similar Threads for eigenfunction position operator |
---|

I Why do we need the position operator? |

I Orthogonality in QM |

A Inverse momentum operator |

I Does the Schrödinger equation link position and momentum? |

I Eigenfunctions and collisions |

**Physics Forums | Science Articles, Homework Help, Discussion**