I QFT - Confusion about Fermi's Golden Rule & Cross-Sections

tomdodd4598
Messages
137
Reaction score
13
Hey there! I've recently been looking at calculating amplitudes, densities of states and scattering cross sections in QFT, but am having a little bit of trouble with the exact form of the cross section - particularly with factors of ##2E## for the energies of the incoming and outgoing particles it seems.

When I first approached the topic, my understanding was that the differential transition rate from Fermi's golden rule is given by: $$d{ \Gamma }_{ if }=2\pi { \left| { M }_{ if } \right| }^{ 2 }{ \left( 2\pi \right) }^{ 4 }{ \delta }^{ \left( 4 \right) }\left( \sum { { k }_{ f } } -\sum { { k }_{ i } } \right) \prod { \frac { { d }^{ 3 }\vec { { k }_{ f } } }{ { \left( 2\pi \right) }^{ 3 } } }$$ However, if I use this as the basis for calculating various differential scattering cross sections ##\frac { d\sigma }{ d\Omega }##, for example scattering from a potential or 2→2 scattering, I ended up being a factor of ##2E## or ##16{ E }_{ i1 }{ E }_{ i2 }{ E }_{ f1 }{ E }_{ f2 }## out, respectively.

I recalled such factors appearing in places such as the Lorentz-invariant measure ##\frac { 1 }{ 2E } \frac { { d }^{ 3 }\vec { k } }{ { \left( 2\pi \right) }^{ 3 } }##, defining 'four-momentum states' ##\left| k \right> ={ \left( 2\pi \right) }^{ 3/2 }{ \left( 2E \right) }^{ 1/2 }\left| \vec { k } \right>##, so I thought that maybe these factors of ##2E## would appear in the calculations for ##M_{ if }## (due to the state normalisation), and would cancel with factors of ##2E## in some sort of Lorentz invariant form of the golden rule above.

I guess my question is whether this is indeed the case, and if so, how to modify the formula for ##d{ \Gamma }_{ if }## to account for the new factors in ##M_{ if }##. It doesn't seem to me that one can just stick factors of ##\frac { 1 }{ 2E }## into the phase space measure, as that would not give me the correct energies (such as for 2→2 scattering, for example), though I may be wrong. As a side query, it seems the units of the matrix element can vary depending on the process being studied - is this correct?

Thanks in advance for any help!
 
Physics news on Phys.org
You need to have a consistent set of conventions for the amplitude and the factors that ##|M_{if}|^2## is multiplied by. Different texts use different conventions.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top