- #1

Callmelucky

- 144

- 30

- Homework Statement
- What is the right way to write solutions?

- Relevant Equations
- ##=\frac{-b\pm \sqrt{b^2-4ac}}{2a}##

I was given a problem to solve that goes like this ##\frac{3}{|x+3|-1}\geq |x+2|## . I got the correct solution for all possible cases and here they are; for ##|x+3|\geq0## and ##|x+2|\geq## i got ##x\epsilon <-2, -2\sqrt{3} ]## and for ##|x+3|\leq0## , ##|x+2|\leq0## I got ##x\epsilon [-5, -4> ##

For other cases there is no possible solutions.

Now, my question is, since these are answers for different scenarios ##|x+3|\geq0## and ##|x+2|\geq0## and ##|x+3|\leq0## and ##|x+2|\leq0##, should I leave solutions as answers separately or should I write them as union eg. ##x\epsilon [-5, -4> U <-2, -2+\sqrt{3}]##?

Thank you.

For other cases there is no possible solutions.

Now, my question is, since these are answers for different scenarios ##|x+3|\geq0## and ##|x+2|\geq0## and ##|x+3|\leq0## and ##|x+2|\leq0##, should I leave solutions as answers separately or should I write them as union eg. ##x\epsilon [-5, -4> U <-2, -2+\sqrt{3}]##?

Thank you.

Last edited: