Quantifying the magnetic force on a magnet moving through a coil?

Click For Summary
SUMMARY

The discussion centers on calculating the magnetic force acting on a magnet moving through a conducting coil, specifically when the coil forms a closed circuit. Raymond Bryant seeks guidance on quantifying this force as a function of the magnet's velocity and references relevant academic papers. Participants share insights on modeling the system, including integrating contributions from individual coil wraps and calculating terminal velocity using specific parameters such as permeability of free space and resistivity of copper. The conversation highlights the complexity of the problem, suggesting that analyzing a single coil turn may not yield significant results.

PREREQUISITES
  • Understanding of electromagnetic induction principles
  • Familiarity with mathematical integration techniques
  • Knowledge of magnetic properties, including magnetic surface charge density
  • Proficiency in MATLAB for numerical simulations
NEXT STEPS
  • Research the mathematical modeling of eddy current forces in conducting materials
  • Learn about the magnetic moment of magnets and its relevance in coil interactions
  • Explore the behavior of long solenoids and their equivalence to coils in magnetic applications
  • Study the implementation of numerical methods in MATLAB for simulating magnetic fields
USEFUL FOR

Physicists, electrical engineers, and students interested in electromagnetic theory and applications involving magnetic forces and induction.

rayjbryant
Messages
23
Reaction score
6
So I'm familiar with the magnet falling through a copper tube demonstration that shows the induced magnetic fields slowing the magnet down.

I know that this experiment is also possible with a conducting coil as long as the coil forms a closed circuit. I'm trying to find a way to calculate the force acting on the magnet as a function of velocity. Does anyone have a paper they can point me toward?

Thank you,
Raymond Bryant
 
Physics news on Phys.org
vanhees71 said:
Hello vanhees, I've looked at this paper before.

Something I tried to do was treat each wrap of the coil as an individual segment and integrate to get its contribution. I wasn't sure if my results were reasonable. I get a very small terminal velocity.

[CODE lang="matlab" title="coil approximation"]clc
clear all
close all

% magnet dimensions [m]

d = .0127; %magnet height
r = .00238; %magnet radius

%mass of magnet [kg]

m_w = .0017;

% other constants

u_0 = 1.26E-6; % permeability of free space constant T m/A
g = 9.81; % gravitational constant m/s^2

%coil properties [m]

a = .00635; %radius
w = .000635; %width of wire
N = 100; % number of turns
c = pi*a*2; %circumference
wl = c*N; %wire length
cs = pi*(w/2)^2; %cross sectional area
rho = 1.7e-8; % resistivity of copper [ohm/m]
wr = (rho*wl)/cs; % resistance in wire [ohm]
lt = 0.3048; % length of tube

%magnetic properties

sm = 72730000; % magnetic surface charge density [Mx/m^2]

qm = pi*sm*r^2; % total charge Mx

eff_dist = .003175; %effective distance of magnet [m]

%terminal velocity calculation

p = qm*d;
x = d/a;
val = scalingfunction(x);

v = (8*pi*m_w*g*rho*a^2)/(u_0^2*qm^2*w*val); %terminal velocity calculation

%for one ring

flux = [];
z = 0:.00001:eff_dist;

for i = 1:1:length(z) %z varies from zero to effective distance of magnet

flux(end+1) = (u_0*qm*.5)*(((z(i)+d)/sqrt((z(i)+d)^2+a^2))-(z(i)/sqrt(z(i)^2+a^2)));

end

Total_flux = 2*sum(flux);

delta_t = (2*eff_dist)/v;

emf = (N*Total_flux)/delta_t;

function [val] = scalingfunction(x)
fun = @(x,y) ((1./(y.^2+1).^(3/2))-(1./((y+x).^2 + 1)).^(3/2)).^2;
val = integral(@(y) fun(x,y),-Inf,Inf);
end[/CODE]
 

Attachments

You will not get much in the way of quantitative results.
Trying to analyze one coil turn at a time is hopeless. Just calculating the flux in a 1-turn coil with given current is beyond any introductory physics course.

You'd have better luck with a long solenoid in which case the two
situations (solenoid & tube) are equivalent. You'd have to know the mag moment of your magnet, for openers.
 
  • Like
Likes   Reactions: Delta2
Try to contact @kuruman , he has written a mini treatise on this problem , its not my intellectual property so I am not sure I am entitled to give it.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 7 ·
Replies
7
Views
3K