Quantum Harmonic Oscillator with Additional Potential

Mr_Allod
Messages
39
Reaction score
16
Homework Statement
Apply and additional potential ##V'(x) = \alpha x## to the standard Hamiltonian of a harmonic oscillator. Find the solutions to the Schrodinger equation.
Relevant Equations
Harmonic Oscillator Hamiltonian: ##H = - \frac \hbar {2m} \frac {d^2}{dx^2}\psi + \frac {m\omega^2 x^2}{2}##
Hello there, I am trying to solve the above and I'm thinking that the solutions will be Hermite polynomials multiplied by a decaying exponential, much like the standard harmonic oscillator problem. The new Hamiltonian would be like so:

$$H = - \frac \hbar {2m} \frac {d^2}{dx^2}\psi + \frac {m\omega^2 x^2}{2} + \alpha x$$

Normally one would make the substitutions:

$$y = \sqrt{\frac {m\omega}{\hbar}}$$
$$\epsilon = \frac {2E}{\hbar\omega}$$

This would produce a solvable dimensionless differential equation:
$$\frac {d^2}{dy^2}\psi + (\epsilon-y^2)\psi = 0$$

Now I'm having trouble finding the correct substitution to make to reduce the new problem to a dimensionless one like above. I would appreciate it if someone could give me some suggestions, thank you!
 
Physics news on Phys.org
Rather think about the Hamiltonian a bit first.

Hint: Think about the classical case. What's the change of the potential due to the additional linear piece? Equivalently you can think about, what it changes for the force acting on the particle and how does it affect the solutions of the classical equations of motion?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top