Quantum mechanics - infinite square well problem

Graham87
Messages
72
Reaction score
16
Homework Statement
For a wave function evaluate the following integral
Relevant Equations
Infinite square well equations
68F60F46-5560-45FC-9CF0-C50C5E2CFB70.jpeg


I have solved c), but don’t know how to solve the integral in d.
It looks like an integral to get c_n (photo below), but I still can’t figure out what to make of c) in the integral of d).
image.jpg


I also thought maybe you can rewrite c) into an initial wave function (photo below) with A,x,a but don’t know how.
472BCFEE-529C-49E9-8ED2-EABF62F74305.jpeg

Thanks!
 
  • Like
Likes Delta2
Physics news on Phys.org
Graham87 said:
I have solved c), but don’t know how to solve the integral in d.

Consider using a trig identity to write ##\sin\left(\frac{2\pi}{a}x\right)\cos\left(\frac{2\pi}{a}x\right)## in a way that will be helpful in evaluating the integral.
 
  • Like
Likes Graham87 and Delta2
I tried like this already, but I still don’t know how to deal with c) in the integral.
 

Attachments

  • 8BE62874-9E0F-4B97-A101-BABE052364B9.jpeg
    8BE62874-9E0F-4B97-A101-BABE052364B9.jpeg
    18.1 KB · Views: 113
Graham87 said:
I tried like this already, but I still don’t know how to deal with c) in the integral.
OK, good. Can you relate ##\large\frac{\sin\left(\frac{4\pi x}{a}\right)}{2}## to one of the ##\psi_n(x)##?
 
  • Like
Likes Graham87 and Delta2
TSny said:
OK, good. Can you relate ##\large\frac{\sin\left(\frac{4\pi x}{a}\right)}{2}## to one of the ##\psi_n(x)##?
ψ4(x) ?
 
  • Like
Likes Delta2
Graham87 said:
ψ4(x) ?
Exactly what is the relation between ##\large\frac{\sin\left(\frac{4\pi x}{a}\right)}{2}## and ##\psi_4(x)##?
 
  • Like
Likes Graham87 and Delta2
TSny said:
Exactly what is the relation between ##\large\frac{\sin\left(\frac{4\pi x}{a}\right)}{2}## and ##\psi_4(x)##?
Same n?
How does this look?
ACD070BB-98B2-4CAD-B374-500DD7989A20.jpeg


I don’t think it’s correct because c_4 is not the same answer.
 
Graham87 said:
How does this look?View attachment 303556
That will work.

However, it's maybe a little nicer to show ##\large\frac{\sin\left(\frac{4\pi x}{a}\right)}{2} = \frac{\sqrt{2a}}{4}\psi_4(x)## . Then you don't need to do any explicit integration. Just use the orthonormality of the ##\psi_n(x)##.
 
  • Like
Likes Delta2, Graham87, PeroK and 1 other person
TSny said:
That will work.

However, it's maybe a little nicer to show ##\large\frac{\sin\left(\frac{4\pi x}{a}\right)}{2} = \frac{\sqrt{2a}}{4}\psi_4(x)## . Then you don't need to do any explicit integration. Just use the orthonormality of the ##\psi_n(x)##.
So like this?
A0710200-8584-4EB8-96B3-537C107CB102.jpeg


I found the integral d) similar to this.
AB466BC8-F03B-47C5-B958-66B7EFB80845.jpeg

Is it wrong to assume that c_4 should be the same as my answer in d)?
In that case my answer in d is not correct.
 
  • #10
You're asking, are
$$\frac{\sqrt{2a}}{4} \int \psi_4^2\,dx$$ and $$\int \psi_4^2\,dx$$ equal? I think you should be able to answer that on your own. :)
 
  • Like
Likes Graham87
  • #11
You need to calculate ##\int_0^a{\sin\left(\frac{2\pi x}{a}\right)\cos\left(\frac{2\pi x}{a}\right)}\Psi(x,0)dx##

Write this as ##\frac{\sqrt{2a}}{4}\int_0^a\psi_4(x)\Psi(x,0)dx##.

Substitute the given expression for ##\Psi(x,0)## and evaluate using the orthonormality of the ##\psi_n(x)##.

You should get the same answer as you got in post #7.
 
  • Like
  • Love
Likes Delta2, PeroK and Graham87
  • #12
Big thanks! Got it!
 
  • Like
Likes TSny
  • #13
Graham87 said:
Big thanks! Got it!
In general, it's a good habit to use the notation ##\psi_n(x)## and use the general properties of eigenfunctions - especially orthonormality - as much as possible. And only resort to the specific eigenfunctions when necessary.
 
  • Like
  • Informative
Likes Graham87, Delta2 and TSny
Back
Top