A Question about dilaton monopole interaction derivation

user1139
Messages
71
Reaction score
8
TL;DR Summary
Please see below.
I am trying to understand how one derives the dilaton monopole interaction. In "Black holes and membranes in higher-dimensional theories with dilaton fields", Gibbons and Maeda mentioned that one could obtain the dilaton monopole interaction as such:

Dilaton monopole interaction derivation by Gibbons and Maeda.


where the action is given by

The action.


However, I do not understand their reasoning for introducing ##\Psi## to define ##\Sigma## in order to derive Eq. (4.8). Could someone explain it?
 
Physics news on Phys.org
If you look at the coefficient of (∇φ)2 in their equation 2.1, you'll see it's minus the square of the field redefinition factor. So they must be aiming for a dilaton kinetic term with a coefficient of 1.
 
mitchell porter said:
If you look at the coefficient of (∇φ)2 in their equation 2.1, you'll see it's minus the square of the field redefinition factor. So they must be aiming for a dilaton kinetic term with a coefficient of 1.
Still, how do they get ##\Sigma## from ##\Psi##? Did they just consider the asymptotic behaviour of ##\Psi## and define ##\Sigma## as such?
 
4.7, 4.8 are the same form as 4.5, 4.4, which describe electric charge and electrostatic potential. The reasoning would appear to be exactly analogous.
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...
Back
Top