- #1
- 62
- 9
I saw that we can talk about the light as particles (photons ) or as an electromagnetic wave , the question is that do we represent other electromagnetic waves (like microwaves or radio waves ) as particles (like we do with light ) ?
Yes. Quantum Electrodynamics (the quantum mechanical theory of light) applies to the entire electromagnetic spectrum.I saw that we can talk about the light as particles (photons ) or as an electromagnetic wave , the question is that do we represent other electromagnetic waves (like microwaves or radio waves ) as particles (like we do with light ) ?
We use the model that works best for us at the time.I saw that we can talk about the light as particles (photons ) or as an electromagnetic wave , the question is that do we represent other electromagnetic waves (like microwaves or radio waves ) as particles (like we do with light ) ?
Once you get to visible light, individual photons can be fairly easily measured with photo sensors and people claim that individual photons can be seen by a fully dark adapted human eye as tiny flashes of light 'in the pitch dark'. (Never saw it myself and I wonder whether it's just random noise on the retina.)Counting photons at radio frequencies is going to be quite difficult.
That is a great response. When I asked for a specific property of photons as particles some time ago, I got the response that photons are clearly waves and not particles and that I am stating nonsense by asking for particles; and my access to the forum was blocked. What has changed?We use the model that works best for us at the time.
"(like microwaves or radio waves )". The fact that we call them waves is a clue that the photon model is not as useful as the wave model.
Consider a 100 MHz 1 watt transmitter.
Photon energy; E = h⋅freq; where Planck constant, h = 6.62607015×10-34 J / Hz.
E = 6.626e-34 * 1e8 = 6.626e-26 joule per photon.
1 watt is 1 joule per second. That is 15.1×1024 photons per second.
Counting photons at radio frequencies is going to be quite difficult.
You asked the right question. It was answered by a pragmatic engineer. I half expected to be punished for having strayed from the Engineering into the Physics part of the forums.What has changed?
You must have misunderstood what you saw or you remember it incorrectly. Photons are particles. If you have a large collection of photons then the wave properties can appear.I got the response that photons are clearly waves and not particles
There's a lot more to that statement than you are implying. Just what do you mean when you use the word 'particle'? First thing is that you cannot treat a photon as a little bullet; its position and 'extent' have no meaning so a flash of light is not a shower of photons (in the way people understand what a shower is).Photons are particles.