Question about mechanical energy and lowering a block

AI Thread Summary
When lifting a block, the work done translates to an increase in potential energy (PE) of the block/earth system, as kinetic energy (KE) remains constant. Conversely, when lowering the block, the work done results in a decrease in mechanical energy, suggesting that energy must be accounted for elsewhere. The discussion posits that this lost energy likely dissipates as heat due to friction in the body or through other mechanisms, similar to a crane's brake heating up when lowering a weight. While some argue that biological processes complicate the scenario, it is concluded that the energy is primarily dissipated as heat, regardless of the method used to lower the block. Ultimately, the body absorbs energy in various forms, but it lacks regenerative mechanisms to recover the energy expended.
cgiustini
Messages
11
Reaction score
0
When one lifts a block off of the ground and holds it in the air, the work done by one's lifting force is equal to the change in total mechanical energy of the block/earth system. Since the mechanical energy is KE+PE and since KE doesn't change during the motion, the work done by the lifting force is equal to a change in PE. This is obvious and is easy to visualize from an energy transaction perspective: the biochemical energy in the arm muscles gets converted into potential energy.

However, when one lowers a block from a shelf and places it on the floor, the work done by the lowering force is equal to the change in total mechanical energy and that change is negative since the KE is constant and the PE goes down. Since the mechanical energy of the block/earth system went down and since all energy is the universe is constant, where did that energy go? If the block/earth system's PE went down, something else's energy must have gone up. Did the thermal energy in the bones joints of the person lowering the object go up? Did elastic energy in the atoms of the person's body go up due to the weight of the object? Clearly, the person's biochemical energy did not get replenished by the drop in potential energy (which would make no sense), but what form of energy did go up?
 
Physics news on Phys.org
First, forget about the human body, and instead imagine the task is being done by a machine - a crane. The weight is supended by the cable, which goes through the upper pulley of the crane and then is wound around the cable drum. When the drum is locked, the weight is suspended motionless in the air. To lower the weight, the drum is unlocked but the brake is applied, and as the weight descends, the brake heats up and dissipates heat to the surrounding air. That's where the potential energy goes.

Now in the case of the human body replacing the crane: if you let the cable slip through your hands you will feel the frictional heating. The less friction, the less the energy is dissipated (and the greater the KE due to velocity at the time the weight hits the ground). If you let the weight down without slipping -- say by hand-over-handing it down -- the story gets more complicated than classical mechanics. You need biology / physiology to answer the question in that case.
 
gmax137 gave a very good answer until this point:
gmax137 said:
If you let the weight down without slipping -- say by hand-over-handing it down -- the story gets more complicated than classical mechanics. You need biology / physiology to answer the question in that case.

No, you really do not need biology / physiology to answer the question; the answer does not change. The energy is still dissipated as heat.
 
Thanks for both of your answers. I think I agree more with gmax137. I think that the energy is most likely dissipated as heat (potential friction in the elbow joints), but I don't know enough about the body to be certain. But why couldn't there be other bodily mechanisms that dissipate the energy?

At the end of the day, what I wanted to get at is that the body is indeed absorbing the energy in some form, just like the crane's brake friction with the rope keeps the potential energy from being into kinetic energy.
 
Some parts of our body can store mechanical energy - for example when running the tendons in your legs act like springs and can store some energy, but only briefly.

As far as I'm aware the processes that make our muscles work aren't reversible. eg Your muscles use oxygen but can't generate oxygen. We haven't evolved regenerative braking yet.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Back
Top