Question about the argument in a Complex Exponential

Click For Summary
The discussion clarifies that the expression e^-iwx can indeed be represented as cos(-wx) - isin(wx) by applying a substitution where u = wx. It emphasizes the use of Euler's formula, e^{-iu} = cos(u) - i sin(u), to derive the relationship. The even nature of the cosine function allows for simplification by removing the negative sign from the argument. Additionally, it notes that Euler's formula is applicable regardless of whether x is a real number. Overall, the transformation holds true under the discussed conditions.
Haku
Messages
30
Reaction score
1
Homework Statement
e^-iwt = ?
Relevant Equations
Eulers formula
I know that e^-ix = cos(-x)-isin(x), but if we have e^-iwx does that equal cos(-wx) - isin(wx)?
Thanks
 
Physics news on Phys.org
Sure, why not? Just do a u-sub. Let ##u = wx## then you have ##e^{-iu} = \cos u - i\sin(u)##. Also, remember that cos is an even function, so you can drop the negative inside your argument!
 
  • Like
Likes Haku, Delta2 and FactChecker
If w is supposed to be a fixed complex number, you might prefer to rewrite the expression a bit before applying Euler's formula to it. But the statement is certainly true, nothing about Euler's formula requires x to be a real number to begin with.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...