Question about the derivation of linear magnification

AI Thread Summary
The discussion revolves around the derivation of linear magnification using Snell's law, specifically addressing the confusion regarding the relationships between angles and heights of objects and images. The user seeks clarification on why the tangent of the angles of incidence is expressed as ratios of height to distance, particularly noting a typographical error in their initial post. Other participants express similar confusion and request a revised diagram to better understand the relationships involved. Eventually, the user discovers a relevant diagram that clarifies their questions. The conversation highlights the importance of accurate diagrams in understanding optical principles.
Baal Hadad
Messages
17
Reaction score
2
Homework Statement
Given the diagram below, I would like to derive the expression for linear magnification:
Relevant Equations
$$m=\mod{\frac{n_1v }{n_2u}}$$
I tried assumed ##\theta \approx sin \theta \approx tan \theta##.
By Snell's law(after approximation),
$$n_1 \tan( i_1)= n_2 \tan( i_2)$$
If ##\tan (i_1)=\frac {h_o}{ u}## and ##\tan (i_2)=\frac {h_i}{ v}##,then
$$m=\frac {h_i}{h_o}=\mod{\frac {v n_1}{un_2}}$$
Which is the expected expression.
I don't consider orientation of image here.
The point that I confused is why##\tan (i_1)=\frac {h_o}{ u}## and ##\tan (i_2)=\frac {h_i}{ u}##.
I even can't find the height of image and object from this diagram,and how the height is related with the angle ##i_1## and ##i_2##.
Can anyone help me?
Thanks in advance.
 

Attachments

  • 15638045496385286667207122650364.jpg
    15638045496385286667207122650364.jpg
    25.7 KB · Views: 349
Physics news on Phys.org
Baal Hadad said:
The point that I confused is why##\tan (i_1)=\frac {h_o}{ u}## and ##\tan (i_2)=\frac {h_i}{ u}##.
I am confused about the same point. I see neither ##h_o## nor ##h_i## in the figure. Can you post a revised figure? If you do, please make sure that it's at the appropriate orientation.
 
kuruman said:
I am confused about the same point. I see neither ##h_o## nor ##h_i## in the figure. Can you post a revised figure? If you do, please make sure that it's at the appropriate orientation.
Here is the situation:
The diagram above is used to derive the refraction formula by my lecturer.After deriving,he directly introduce (without new diagrams ) when ##r=infinity## the right hand term becomes zero and then below the magnification formula.Do these two are related?
Anyway,so I assume the magnification formula is derived from the same diagram as no new diagram is given.
For now,I only found that Pedrotti has the relevant topics but still the diagram is as below attached.But still don't have the image height and object height.
Sorry that I can't find relevant diagrams (or I don't understand which diagram can be used).
 

Attachments

  • Screenshot_20190723_065733.jpg
    Screenshot_20190723_065733.jpg
    29 KB · Views: 365
Baal Hadad said:
The point that I confused is why##\tan (i_1)=\frac {h_o}{ u}## and ##\tan (i_2)=\frac {h_i}{ u}##.
Oh,and sorry for typos.It should be ##\tan (i_2)=\frac {h_i}{ v}##.

Well,I found the relevant diagram just next page of the posted page of Pedrotti,sorry for bringing everyone much trouble.
Thank you.
 

Attachments

  • Screenshot_20190723_202236.jpg
    Screenshot_20190723_202236.jpg
    35.5 KB · Views: 327
Last edited:
  • Like
Likes Tom.G
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top