A Question about Weinberg's GR book

LordShadow_05
Messages
3
Reaction score
1
TL;DR Summary
Why does Weinberg discard a term of the ricci tensor he should be taking into account in the post-newtonian approximation of fourth order?
To anyone who has studied Weinberg's book. Does anyone know why Weinberg discards the fourth order term of the purely spatial components of the ricci tensor? It's the chapter 9 (post-newtonian approximation) of his GR book. It doesn't make sense to me because he includes the R_{00} term of fourth order but not R_{ij}.
 

Attachments

  • Weinberg.webp
    Weinberg.webp
    22.9 KB · Views: 18
Physics news on Phys.org
It seems that Weinberg's treatment reflects the physical hierarchy in gravitational systems: time components (energy) drive the dynamics while spatial components (stress) provide corrections. Including fourth-order R₀₀ but not R_ij maintains the appropriate balance between accuracy and computational tractability in the post-Newtonian framework.This is a standard and well-justified approach in post-Newtonian theory, used successfully in gravitational wave astronomy and precision tests of General Relativity.
 
  • Like
Likes LordShadow_05
Alien101 said:
It seems that Weinberg's treatment reflects the physical hierarchy in gravitational systems: time components (energy) drive the dynamics while spatial components (stress) provide corrections. Including fourth-order R₀₀ but not R_ij maintains the appropriate balance between accuracy and computational tractability in the post-Newtonian framework.This is a standard and well-justified approach in post-Newtonian theory, used successfully in gravitational wave astronomy and precision tests of General Relativity.
Ok, now I understand. Thank you very much!
 
The reason that ##^4_{R_{i j}}## is not included in the list (9.1.26) through (9.1.29) is because this list is meant to include only the Ricci terms that can be calculated from the list of affine connection terms given in (9.1.16) through (9.1.22) on page 215. Note how all the connection terms that appear on the right sides of (9.1.26) through (9.1.29) are in the list (9.1.16) through (9.1.22). At the top of page 216, Weinberg refers to the connection terms in (9.1.16) through (9.1.22) as the “known” affine connection terms.

You can show that ##^4_{R_{i j}}## depends on affine connection terms not included in (9.1.16) through (9.1.22), such as ##^4_{\Gamma^0_{0i}}## and ##^3_{\Gamma^0_{ij}}##. So, ##^4_{R_{i j}}## is not included in (9.1.26) through (9.1.29).

If you proceed through Weinberg’s analysis on pages 216-220, you will see that he needs only the Ricci terms listed in (9.1.26) through (9.1.29).
 
  • Like
Likes jbergman, LordShadow_05 and Alien101
TSny said:
The reason that ##^4_{R_{i j}}## is not included in the list (9.1.26) through (9.1.29) is because this list is meant to include only the Ricci terms that can be calculated from the list of affine connection terms given in (9.1.16) through (9.1.22) on page 215. Note how all the connection terms that appear on the right sides of (9.1.26) through (9.1.29) are in the list (9.1.16) through (9.1.22). At the top of page 216, Weinberg refers to the connection terms in (9.1.16) through (9.1.22) as the “known” affine connection terms.

You can show that ##^4_{R_{i j}}## depends on affine connection terms not included in (9.1.16) through (9.1.22), such as ##^4_{\Gamma^0_{0i}}## and ##^3_{\Gamma^0_{ij}}##. So, ##^4_{R_{i j}}## is not included in (9.1.26) through (9.1.29).

If you proceed through Weinberg’s analysis on pages 216-220, you will see that he needs only the Ricci terms listed in (9.1.26) through (9.1.29).
Oh I see. So the thing is that even if ##^4_{R_{i j}}## is of fourth order it doesn't contribute because we see that it is constructed with components of Christoffel's symbol that don't appear in the geodesic equation, so those components aren't measurable, right? I have calculated this component of the Ricci tensor including the "unknown" affine connection terms and I obtained the following:
$$^4_{R_{i j}}=\partial_j ^4_{\Gamma^0_{i0}}-\partial_0 ^3_{\Gamma^0_{ij}}+\partial_j ^4_{\Gamma^k_{ik}}-\partial_k ^4_{\Gamma^k_{ij}}+ ^2_{\Gamma^0_{i0}} ^2_{\Gamma^0_{j0}}+ ^2_{\Gamma^m_{ik}} ^2_{\Gamma^k_{jm}} - ^2_{\Gamma^k_{ij}} ^2_{\Gamma^0_{k0}} - ^2_{\Gamma^m_{ij}} ^2_{\Gamma^k_{mk}}$$
I find that this component of the Ricci tensor isn't only constructed with "unknown" affine connection terms but also with "known" ones. Then, why don't we take into account those terms which contain "known" affine connection terms?
Also, at the end of that same page (216) he uses the harmonic gauge ##\Gamma^{\lambda}=0##. For the component ##\lambda=0## he obtains the equation 9.1.35. For obtaining that equation he made use of the "unknown" affine connection term ##^3_{\Gamma^0_{ij}}##. So why can he use the "unknown" terms here but not in the Ricci tensor?
Thank you very much for your comment.

Edit: my formula doesn't show up and I don't know why. I have attached an image.
 

Attachments

  • IMG_9651.webp
    IMG_9651.webp
    10.9 KB · Views: 11
Tλλ
LordShadow_05 said:
Oh I see. So the thing is that even if ##^4_{R_{i j}}## is of fourth order it doesn't contribute because we see that it is constructed with components of Christoffel's symbol that don't appear in the geodesic equation, so those components aren't measurable, right? I have calculated this component of the Ricci tensor including the "unknown" affine connection terms and I obtained the following:
$$^4_{R_{i j}}=\partial_j ^4_{\Gamma^0_{i0}}-\partial_0 ^3_{\Gamma^0_{ij}}+\partial_j ^4_{\Gamma^k_{ik}}-\partial_k ^4_{\Gamma^k_{ij}}+ ^2_{\Gamma^0_{i0}} ^2_{\Gamma^0_{j0}}+ ^2_{\Gamma^m_{ik}} ^2_{\Gamma^k_{jm}} - ^2_{\Gamma^k_{ij}} ^2_{\Gamma^0_{k0}} - ^2_{\Gamma^m_{ij}} ^2_{\Gamma^k_{mk}}$$
I find that this component of the Ricci tensor isn't only constructed with "unknown" affine connection terms but also with "known" ones. Then, why don't we take into account those terms which contain "known" affine connection terms?

The objective is to determine the free-fall equations of motion to order ##\frac {\overline{v}^4}{\overline r}.## This requires knowing the specific ##\overset{\small N}{g}_{\mu \nu}##’s on the right-hand sides of (9.1.16) – (9.1.22). Specifically, we need to find these: ##\overset{\small 2}{g}_{00}##, ##\overset{\small 4}{g}_{00}##, ##\overset{\small 3}{g}_{i0}##, and ##\overset{\small2}{g}_{ij}##.

These ##\overset{\small N}{g}_{\mu \nu}##’s are determined from the Einstein field equations ## \overset{\small 2}{R}_{00} = -8\pi G \overset{\small 0}{S}_{00} ##, ##\overset{\small 4}{R}_{00} = -8\pi G\overset{\small 2}{S}_{00}##, ##\overset{\small 3}{R}_{i0} = -8\pi G \overset{\small 1}{S}_{i0}##, and ##\overset{\small 2}{R}_{ij} = -8\pi G \overset{\small 0}{S}_{ij}##, where ##S_{\mu \nu} = T_{\mu \nu} - \frac 1 2 g_{\mu \nu} {T^{\lambda}}_{\lambda}##.

Setting up ##\overset{\small 4}{R}_{ij} = -8\pi G \overset{\small 2}{S}_{ij}## would not help. It would result in an equation involving unknown ##\overset{\small N}{g}_{\mu \nu}##’s that we do not need for the equations of motion. So, ##\overset{\small 4}{R}_{ij} = -8\pi G \overset{\small 2}{S}_{ij}## is not going to be helpful in determining the ##\overset{\small N}{g}_{\mu \nu}##’s that we need.

LordShadow_05 said:
Also, at the end of that same page (216) he uses the harmonic gauge ##\Gamma^{\lambda}=0##. For the component ##\lambda=0## he obtains the equation 9.1.35. For obtaining that equation he made use of the "unknown" affine connection term ##^3_{\Gamma^0_{ij}}##. So why can he use the "unknown" terms here but not in the Ricci tensor?

##\overset{\small 3}{\Gamma^0}_{ij}## does not appear in the list (9.1.16)-(9.1.22). But this term is nevertheless needed in deriving equation (9.1.35), which can be used to help simplify (9.1.30)-(9.1.33). I don’t see any problem here.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top