Question in the momemtum-impulse theorem derivation

Click For Summary

Discussion Overview

The discussion revolves around the momentum-impulse theorem and its derivation, focusing on the relationship between force, momentum, and the change in momentum over time. Participants explore the implications of constant net force and the mathematical representation of momentum changes.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants question how the rate of change of momentum (dp/dt) can be equated to the total change in momentum (p2 - p1) when assuming dp/dt is constant.
  • Others clarify that if the net force is constant, it implies that the rate of change of momentum is also constant, leading to discussions about the integration of Newton's second law.
  • One participant points out a potential mismatch in units when trying to replace dp/dt with p2 - p1, suggesting that an integral sign may be missing.
  • Another participant emphasizes that the derivation involves replacing the numerator of dp/dt with the change in momentum, rather than equating dp/dt directly to p2 - p1.
  • There is a reference to the impulse-momentum theorem and its relationship to Newton's second law, with some participants discussing the integration of these concepts over time.

Areas of Agreement / Disagreement

Participants express differing views on the mathematical treatment of momentum changes and the implications of constant force. The discussion remains unresolved regarding the proper interpretation of the equations involved.

Contextual Notes

Some participants note limitations in understanding the derivation, particularly concerning the assumptions made about constant mass and the treatment of derivatives and integrals in the context of momentum changes.

just NOTHING
Messages
5
Reaction score
0
when the net force is constant then
Q1. rate of change of momentum (dp/dt) is zero or constant
Q2. assuming dp/dt is constant we replaced it with ----> p2-p1(total change in momentum ) ? how?
 
Physics news on Phys.org
Can you clarify question 2.

As for question 1. Observe ( assume #m# is constant)

##F = ma = m \frac{dv}{dt} = \frac{d(mv)}{dt} = \frac{dp}{dt}##

We can bring ##m## inside the derivative since it is a constant.

If ##F## is constant what does that say about ##\frac{dp}{dt}##?
 
just NOTHING said:
Q2. assuming dp/dt is constant we replaced it with ----> p2-p1(total change in momentum ) ? how?
You can't - the units don't match. Have you missed an integral sign somewhere?
 
  • Like
Likes   Reactions: PhDeezNutz
PhDeezNutz said:
Can you clarify question 2.

As for question 1. Observe ( assume #m# is constant)

##F = ma = m \frac{dv}{dt} = \frac{d(mv)}{dt} = \frac{dp}{dt}##

We can bring ##m## inside the derivative since it is a constant.

If ##F## is constant what does that say about ##\frac{dp}{dt}##?
 

Attachments

  • 2021-12-16_19-46.png
    2021-12-16_19-46.png
    39.7 KB · Views: 136
just NOTHING said:
Q2. assuming dp/dt is constant we replaced it with ----> p2-p1(total change in momentum ) ? how?
That is not what your text says. Read the sentence to the end.
 
A.T. said:
That is not what your text says. Read the sentence to the end.
Sorry i got it wrong/
can you tell me what it is trying to say.
 
is it about the derivation of impuse momentum theorem from 2nd law??
 
It's not replacing ##\frac{d \vec{p}}{dt}## with ##\vec{p}_2 - \vec{p}_1##. It's replacing the numerator of ##\frac{d \vec{p}}{dt}## with ##\vec{p}_2 - \vec{p}_1##.

##\vec{J} = \vec{F}\left(t_2 - t_1 \right) \Delta t##

But ##\vec{F}## is constant so, which means the momentum changes at a constant rate (not necessarily that the momentum is always the same)

##\vec{J} = \vec{F} \Delta t = \frac{d\vec{p}}{dt} \Delta t##

Replace ##d\vec{p}= \vec{p}_2 - \vec{p}_1##

##\vec{J} = \frac{\vec{p}_2 - \vec{p}_1}{dt} \Delta t##

##\Delta t## and ##dt## cancel out leaving you with?

##\vec{J} = ## ??
 
  • Like
Likes   Reactions: just NOTHING
It's just Newton's 2nd Law integrated
$$\int_{t_1}^{t_2} \mathrm{d}t \dot{\vec{p}}=\vec{p}(t_2)-\vec{p}(t_1) = \int_{t_1}^{t_2} \mathrm{d} t\vec{F}[\vec{x}(t),t],$$
where the trajectory ##\vec{x}(t)## is the solution of Newton's equation of motion
$$\dot{\vec{p}}=\vec{F}(\vec{x},t).$$
 
  • Like
Likes   Reactions: PhDeezNutz
  • #10
PhDeezNutz said:
It's not replacing ##\frac{d \vec{p}}{dt}## with ##\vec{p}_2 - \vec{p}_1##. It's replacing the numerator of ##\frac{d \vec{p}}{dt}## with ##\vec{p}_2 - \vec{p}_1##.

##\vec{J} = \vec{F}\left(t_2 - t_1 \right) \Delta t##

But ##\vec{F}## is constant so, which means the momentum changes at a constant rate (not necessarily that the momentum is always the same)

##\vec{J} = \vec{F} \Delta t = \frac{d\vec{p}}{dt} \Delta t##

Replace ##d\vec{p}= \vec{p}_2 - \vec{p}_1##

##\vec{J} = \frac{\vec{p}_2 - \vec{p}_1}{dt} \Delta t##

##\Delta t## and ##dt## cancel out leaving you with?

##\vec{J} = ## ??
thanks a lot i feel lighter
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 43 ·
2
Replies
43
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K