Question on discrete commutation relation in QFT

user1139
Messages
71
Reaction score
8
Homework Statement
The statement is in title
Relevant Equations
The equations are given below
Given the commutation relation

$$\left[\phi\left(t,\vec{x}\right),\pi\left(t,\vec{x}'\right)\right]=i\delta^{n-1}\left(\vec{x}-\vec{x}'\right)$$

and define the Fourier transform as

$$\tilde{\phi}(t,\vec{k})=\frac{1}{\sqrt{L^{n-1}}}\int_{\,0}^{\,L}\phi(t,\vec{x})e^{-i\vec{k}\cdot\vec{x}}\,\mathrm{d}^{n-1}\vec{x}$$

$$\tilde{\pi}(t,\vec{k})=\frac{1}{\sqrt{L^{n-1}}}\int_{\,0}^{\,L}\pi(t,\vec{x})e^{-i\vec{k}\cdot\vec{x}}\,\mathrm{d}^{n-1}\vec{x}$$

Is it then correct to say the following?

$$\left[\tilde{\phi}(\vec{k}),\tilde{\pi}(\vec{k}')\right]=i\delta_{\vec{k},-\vec{k}'}=i\delta_{-\vec{k},\vec{k}'}$$

i.e. can I use both Kronecker deltas interchangeably?
 
Physics news on Phys.org
Have you tried to derive the commutator? You also should destinguish the operators ##\phi(t,\vec{x})## from ##\tilde{\phi}(\vec{k})##, because otherwise it leads to confusion. If so, where is your problem. Of course ##\delta_{\vec{k},-\vec{k}'}=\delta_{-\vec{k},\vec{k}'}##.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top