Question on limits used in triple integral for volume of a sphere

Click For Summary
SUMMARY

The discussion centers on deriving the volume of a sphere using spherical coordinates, specifically addressing the integration limits for the angles theta and phi. The correct jacobian for the volume element is established as r²sin(theta) dr d(theta) d(phi). The integration limits are clarified as phi ranging from 0 to 2π and theta from 0 to π, based on the convention that theta is the polar angle and phi is the azimuthal angle. This convention is commonly used by applied mathematicians, engineers, and physicists, contrasting with the definitions used by pure mathematicians.

PREREQUISITES
  • Understanding of spherical coordinates
  • Knowledge of jacobian determinants in multiple integrals
  • Familiarity with polar and azimuthal angles
  • Basic calculus, specifically integration techniques
NEXT STEPS
  • Study the derivation of volume using spherical coordinates in detail
  • Learn about different conventions in spherical coordinates
  • Explore applications of jacobian determinants in physics and engineering
  • Practice solving multiple integrals with various coordinate systems
USEFUL FOR

Students in mathematics, physics, and engineering, particularly those focusing on calculus and volume calculations in three-dimensional space.

redpen
Messages
5
Reaction score
0

Homework Statement



I am to derive the volume of a sphere using spherical coordinates. I have derived the (correct) jacobian as r^2sin(theta) dr d(theta) d(phi) so its simply a matter of integrating over the correct limits.

Homework Equations



What I don't get is why we use 2pi to 0 for phi and pi to 0 for theta, when surely the definition of spherical coordinates uses the opposite limits for the two coordinates.

The Attempt at a Solution



Here http://en.wikipedia.org/wiki/Multip...atical_applications_-_Calculations_of_volume" the correct formula is derived using these limits, so I know it works. But why?


Any help appreciated!
 
Last edited by a moderator:
Physics news on Phys.org
redpen said:

Homework Statement



I am to derive the volume of a sphere using spherical coordinates. I have derived the (correct) jacobian as r^2sin(theta) dr d(theta) d(phi) so its simply a matter of integrating over the correct limits.

Homework Equations



What I don't get is why we use 2pi to 0 for phi and pi to 0 for theta, when surely the definition of spherical coordinates uses the opposite limits for the two coordinates.

The Attempt at a Solution



Here http://en.wikipedia.org/wiki/Multip...atical_applications_-_Calculations_of_volume" the correct formula is derived using these limits, so I know it works. But why?


Any help appreciated!

It depends on your definition of the coordinates. From your above volume element, I presume you're using the convention that the theta angle is the "polar angle" i.e. the one measuring the angle from the z axis, and the phi angle is the "azimuthal angle" i.e. the angle measured in the x-y plane, measured from the x axis.

If these are your conventions, then the theta angle measures from +z to -z (i.e. between 0 and pi) whilst the phi angle covers the whole circle in the x-y plane (i.e. 0 to 2 pi)

Note that there are different conventions used; the convention I mention is used by most applied mathmaticians, engineers, physicists. However, pure mathematicians use the convention that the theta angle is the azimuthal angle, and the phi angle is the polar angle.
 
Last edited by a moderator:
I got it! Yes, I hade got the jacobian wrong. Thanks for the help!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K