MHB Quotient Ring of a Field: Is it Trivial or Isomorphic to the Field?

Click For Summary
The discussion centers on proving that the quotient ring of a field is either trivial or isomorphic to the field itself. It begins with the definition of a homomorphism from the field to the quotient ring and the need to establish its injectivity and surjectivity. A key point raised is that if the ideal N is non-trivial, it must equal the entire field, leading to the conclusion that the quotient ring is trivial. The participants emphasize the importance of correctly identifying the conditions under which the homomorphism is bijective. Overall, the argument concludes that the quotient ring's structure directly relates to the nature of the ideal involved.
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Good afternoon! Along the same lines as the other, here is the question:

Show that the quotient ring of a field is either the trivial one or is isomorphic to the field.

My answer: Let $N$ be an ideal of the field $F$. Assume that $N \neq \{ 0 \}$. Consider the homomorphism $\phi: F \to F / N$ defined by $\phi(a) = a + N$. If we show that it is one-to-one and onto we are done. It is clearly surjective, thus all that is left is to show injectivity. If $a \neq b$ then we will have $a + N \neq b + N$, but this is none other than $\phi(a) \neq \phi(b)$.

Thanks for all help! (Yes)
 
Physics news on Phys.org
a+N ≠ b+N does not follow from a ≠ b. all we can say from a+N ≠ b+N is that:

a-b is not in N.

what you need here is that if N ≠ {0}, then N = F, so that $\phi$ is the 0-map.

suppose N is a non-trivial ideal of F. since N is non-trivial there exists a ≠ 0 in N.

since a is non-zero, and F is a FIELD, we have 1/a in F.

since N is an IDEAL, we have 1 = (1/a)a in N.

thus, for any x in F, we have x = x(1) is in N, since N is an ideal.

since N contains all of F, N = F, as desired.

you have your conditions backwards, as well, you need to show that $\phi$ is bijective iff N = {0}.
 
That's quite a few arguments missing (not to mention mine is wrong). I need to stop and pay more attention whenever I feel uneasy, because at all times it has been proved the uneasiness is justified.

Thanks Deveno!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
901
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
830
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K