Anamitra
- 620
- 0
We consider the geodesic equation:
(1):
<br /> \frac{ d^2 x^\alpha}{ d \tau^2} = <br /> - {{\Gamma}^{\alpha}}_{\beta \gamma} \frac{d x^{\beta}}{d{\tau}} \frac{d x^{\gamma}}{d {\tau}}<br />
For radial motion in Schwarzschild geometry
(2):
\frac{d^2 r}{d \tau^2} =<br /> - {M / {r^2}} { (1 - {{2M} {/} {r}}) } <br /> {( \frac{dt}{d \tau} )}^2<br /> + {M} {/}{r^2} <br /> {( 1- {2M}{/}{r} )}^{-1}<br /> {( \frac{dr}{d \tau} )}^2
Again for radial motion we have
(3):
{d}\tau^{2} =<br /> {(}{1}{-}{2M}{/}{r}{)}{dt}^{2}<br /> {-}{{(}{1}{-}{{2M}{/}{r}}{)}}^{-1}{dr}^{2}
Dividing both sides of equation (3) by {{d}{\tau}}^{2} we have,
{1}{=}{(}{1}{-}{{2M}{/}{r}}{)}{{(}{\frac{dt}{{d}{\tau}}}{)}^{2}{-}{{(}{1}{-}{{2M}{/}{r}}{)}}^{-1}{(}{\frac{dr}{{d}{\tau}}{)}}^{2}} ------------------------------ (4)
Using relation (4) in equation (2)
{\frac{{d}^{2}{r}}{{d}{\tau}^{2}}}{=}{-}{\frac {M}{{r}^{2}}}
The inverse square law is valid accurately if proper time is used.Here 'r' represents coordinate distance along the radius
(1):
<br /> \frac{ d^2 x^\alpha}{ d \tau^2} = <br /> - {{\Gamma}^{\alpha}}_{\beta \gamma} \frac{d x^{\beta}}{d{\tau}} \frac{d x^{\gamma}}{d {\tau}}<br />
For radial motion in Schwarzschild geometry
(2):
\frac{d^2 r}{d \tau^2} =<br /> - {M / {r^2}} { (1 - {{2M} {/} {r}}) } <br /> {( \frac{dt}{d \tau} )}^2<br /> + {M} {/}{r^2} <br /> {( 1- {2M}{/}{r} )}^{-1}<br /> {( \frac{dr}{d \tau} )}^2
Again for radial motion we have
(3):
{d}\tau^{2} =<br /> {(}{1}{-}{2M}{/}{r}{)}{dt}^{2}<br /> {-}{{(}{1}{-}{{2M}{/}{r}}{)}}^{-1}{dr}^{2}
Dividing both sides of equation (3) by {{d}{\tau}}^{2} we have,
{1}{=}{(}{1}{-}{{2M}{/}{r}}{)}{{(}{\frac{dt}{{d}{\tau}}}{)}^{2}{-}{{(}{1}{-}{{2M}{/}{r}}{)}}^{-1}{(}{\frac{dr}{{d}{\tau}}{)}}^{2}} ------------------------------ (4)
Using relation (4) in equation (2)
{\frac{{d}^{2}{r}}{{d}{\tau}^{2}}}{=}{-}{\frac {M}{{r}^{2}}}
The inverse square law is valid accurately if proper time is used.Here 'r' represents coordinate distance along the radius
Last edited by a moderator: