- #1
- 2,950
- 88
Consider pion states composed of ##q \bar q## pairs where ##q \in \left\{u,d \right\}## transforms under an ##SU(2)## isospin flavour symmetry. These bound states transform in the tensor product ##R_1 \otimes R_2## of two representations ##(R_1, R_2)## of ##SU(2)##. Take ##R_2## as the fundamental representation of isospin with generators ##I^i = \sigma^i/2## and ##R_1## is the conjugate fundamental with generators ##-(\sigma^{i})^*/2##. If the third component of isospin is ##I_{\pm}^{R_1 \otimes R_2} = \frac{1}{2} \left( \sigma_1^{R_1 \otimes R_2} \pm i \sigma_2^{R_1 \otimes R_2}\right)## I can try and form a representation of this operator using the standard Pauli matrices. Take ##|\pi^+ \rangle = |u\rangle |\bar d \rangle \equiv |u \rangle \otimes | \bar d \rangle \equiv |u \bar d \rangle##
Then ##I_{+}^{R_1 \otimes R_2} |u \bar d \rangle = \frac{1}{2} \left( \sigma_1^{R_1 \otimes R_2} \pm i \sigma_2^{R_1 \otimes R_2}\right)|u \bar d \rangle = \frac{1}{2}\left( \sigma_1^{R_1} |\bar d\rangle \otimes \text{Id} |u \rangle + \text{Id} |\bar d \rangle \otimes \sigma_1^{R_2} |u \rangle \pm i(1 \leftrightarrow 2)\right)##
1)My first question is if I take ##|u \rangle \rightarrow (1,0), |\bar d \rangle = (0,1)## then I have $$I_+^{R_1 \otimes R_2} |\pi^+ \rangle = I_+^{R_1 \otimes R_2} |u \bar d \rangle $$ This is equal to, $$ \frac{1}{2} \left( \sigma_1^{R_1} | \bar d \rangle \otimes \text{Id}_{2\times 2} |u \rangle + \text{Id}_{2 \times 2} |\bar d \rangle \otimes \sigma_1^{R_2}|u \rangle + i(1 \rightarrow 2) \right)$$ Inputting relevant matrices for sigma_i I get the zero vector as I should since pi^+ is the state of greatest weight and I am applying the raising operator. I just wondered would I get this result independent of the choice of what I take for ##| u \rangle ## and ##|d \bar \rangle## basis vectors? As long as the choice for u and d transforming in fundamental and ubar and dbar transforming in conjugate fundamental are linearly independent?
2) Alternatively, I could just construct the representations for ##I_{\pm}^{R_1 \otimes R_2}## and I would end up with ##4 \times 4## matrices. But what would the ##4 \times 1## objects that these operators act on represent? Would a generic vector be something like ##(u, d, \bar u, \bar d)## so for example I would write ##u = (1,0,0,0)## and ##\bar d = (0,0,0,1)## for example?
Then ##I_{+}^{R_1 \otimes R_2} |u \bar d \rangle = \frac{1}{2} \left( \sigma_1^{R_1 \otimes R_2} \pm i \sigma_2^{R_1 \otimes R_2}\right)|u \bar d \rangle = \frac{1}{2}\left( \sigma_1^{R_1} |\bar d\rangle \otimes \text{Id} |u \rangle + \text{Id} |\bar d \rangle \otimes \sigma_1^{R_2} |u \rangle \pm i(1 \leftrightarrow 2)\right)##
1)My first question is if I take ##|u \rangle \rightarrow (1,0), |\bar d \rangle = (0,1)## then I have $$I_+^{R_1 \otimes R_2} |\pi^+ \rangle = I_+^{R_1 \otimes R_2} |u \bar d \rangle $$ This is equal to, $$ \frac{1}{2} \left( \sigma_1^{R_1} | \bar d \rangle \otimes \text{Id}_{2\times 2} |u \rangle + \text{Id}_{2 \times 2} |\bar d \rangle \otimes \sigma_1^{R_2}|u \rangle + i(1 \rightarrow 2) \right)$$ Inputting relevant matrices for sigma_i I get the zero vector as I should since pi^+ is the state of greatest weight and I am applying the raising operator. I just wondered would I get this result independent of the choice of what I take for ##| u \rangle ## and ##|d \bar \rangle## basis vectors? As long as the choice for u and d transforming in fundamental and ubar and dbar transforming in conjugate fundamental are linearly independent?
2) Alternatively, I could just construct the representations for ##I_{\pm}^{R_1 \otimes R_2}## and I would end up with ##4 \times 4## matrices. But what would the ##4 \times 1## objects that these operators act on represent? Would a generic vector be something like ##(u, d, \bar u, \bar d)## so for example I would write ##u = (1,0,0,0)## and ##\bar d = (0,0,0,1)## for example?