Random walk - why is the STD equal sqrt(n)

Click For Summary

Homework Help Overview

The discussion revolves around a typical random walk problem, where the original poster defines a random variable representing steps taken in a random walk, questioning the expectation and variance of the sum of these steps.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to calculate the expectation and variance of the sum of random steps, initially misapplying the relationship between the sum and individual steps. Other participants point out the error in the formulation of the sum and provide examples of the distribution of outcomes for specific values of n.

Discussion Status

Participants are engaged in clarifying the definitions and properties of the random variables involved. Some have provided examples to illustrate the distribution of the sum, while others have questioned the original poster's reasoning. There is an ongoing exploration of the implications of the variance and standard deviation in the context of the random walk.

Contextual Notes

The original poster's confusion stems from a misunderstanding of how to correctly express the sum of random variables in the context of a random walk, leading to a miscalculation of variance. There are indications of differing interpretations of the notation used in the discussion.

gony rosenman
Messages
11
Reaction score
4
Member warned that the homework template must be used
typical random walk :
one step forward or backward with equal probability and independence of each step , what is the expectation and Variance .

so i define indicator variable xi ={1 or -1 with equal probability .
E(xi) = 0
Var(xi) = 1

now define Sn as the sum of i=1,...,n
each step is independent and identical to the other so
i can say that Sn = nxi
now from definition of Expectation and Variance :
E(Sn) = E(nxi) = nE(xi) = 0
Var(Sn) = Var(nxi) = n2Var(xi) = n2 ⇒σsn=n
but i know for certain that actually the answer is σsn=sqrt(n)
how is that ?
please
thank you!
 
Physics news on Phys.org
##S_n## is the sum of ##x_i: i=1..n##
That is not ##nx_i##.

##S_n## would be {##-n, ... , +n##} with a binomial distribution.
 
Last edited:
.Scott said:
##S_n## is the sum of ##x_i: i=1..n##
That is not ##nx_i##.

##S_n## would be {##-n, ... , 0, ..., +n##} with a binomial distribution.
could you elaborate further?
 
gony rosenman said:
could you elaborate further?
For n=4:
##Sn## would be {-4, p=1/16; -2, p=4/16; 0, p=6/16; +2, p=4/16; +4, p=1/16}
or {-4, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4}

Actually, in post #2, that zero I put in the middle is wrong (I'll edit it):
For n=5:
##Sn## would be {-5, p=1/32; -3, p=5/32; -1, p=10/16; +1, p=10/32; +3, p=5/32; +5, p=1/32}
or {-5, -3, -3, -3, -3, -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 5}
 
.Scott said:
For n=4:
##Sn## would be {-4, p=1/16; -2, p=4/16; 0, p=6/16; +2, p=4/16; +4, p=1/16}
or {-4, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4}

Actually, in post #2, that zero I put in the middle is wrong (I'll edit it):
For n=5:
##Sn## would be {-5, p=1/32; -3, p=5/32; -1, p=10/16; +1, p=10/32; +3, p=5/32; +5, p=1/32}
or {-5, -3, -3, -3, -3, -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 5}
yes but how do you show that σ=√n
 
I was just showing that your logic was wrong. I wasn't computing what it would actually be.
 
.Scott said:
I was just showing that your logic was wrong. I wasn't computing what it would actually be.
are you sure you are capable to assist me ?
i think you might not know what an indicator random variable is and thus you confuse me and might cause actual damage , even though I'm sure your intentions are good
 
o.k so i figured it out by myself , sor anyone who might stumble upon this confusion i will explain :
so sn ≠ nxi but actually sn = ∑ni=1 xi
so E(sn) = E(x1) +...+ E(xn) = 0
and Var(sn) = Var(x1) +...Var(xn) = n ⇒σsn= √n
my mistake was for doing sn = nxi when actually it is sn = ∑ni=1 which is tremendously different .
good luck!
 
I am using the same nomenclature that you introduced.
if ##x_i## = {##-1, 1##} with equal distribution
then the distribution you will get with ##S_n## will be what I showed.
When I take the population standard deviation of some example ##S_n##'s, I get ##\sqrt{n}##.

What is very likely is that your ##nx_n## is not normal multiplication. But if it isn't, you would be running into trouble when you use it as normal multiplication later in your work.
 
  • Like
Likes   Reactions: gony rosenman
  • #10
.Scott said:
I am using the same nomenclature that you introduced.
if ##x_i## = {##-1, 1##} with equal distribution
then the distribution you will get with ##S_n## will be what I showed.
When I take the population standard deviation of some example ##S_n##'s, I get ##\sqrt{n}##.

What is very likely is that your ##nx_n## is not normal multiplication. But if it isn't, you would be running into trouble when you use it as normal multiplication later in your work.

What is more likely is that the OP originally made an error, and wrote down something without giving it a lot of thought.

In fact, the original argument of the OP is almost right: each ##X_i## has mean zero, so each has variance ##\text{Var}(X_i) = E(X_i^2)##. However, since it really is true that all the ##X_i^2 = 1## are identical, it follows that the variance is ##\sum 1 = n.##
 
Last edited:
  • Like
Likes   Reactions: .Scott

Similar threads

Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
736
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K