MHB Ratio Test Questions/ Series Convergence

Click For Summary
SUMMARY

The discussion centers on determining the convergence of the series ∑(cos(nπ)/(n^(2/3))) using the Ratio Test. Participants clarify that while the limit approaches 1, it does not equal 1, leading to confusion regarding convergence. The series is identified as conditionally convergent by applying the Leibniz criterion, despite the absolute series being divergent. The Ratio Test is deemed inappropriate for this series due to the presence of alternating terms.

PREREQUISITES
  • Understanding of the Ratio Test for series convergence
  • Familiarity with the Leibniz criterion for alternating series
  • Knowledge of series convergence concepts, particularly conditional convergence
  • Basic trigonometric functions and their properties in series
NEXT STEPS
  • Study the application of the Ratio Test in series with only positive or negative terms
  • Learn about the Leibniz criterion for alternating series convergence
  • Explore the implications of conditional versus absolute convergence in series
  • Investigate Riemann series and the behavior of series with p-series
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in series convergence techniques, particularly in the context of alternating series and the Ratio Test.

calcboi
Messages
16
Reaction score
0
I am trying to determine convergence for the series n=1 to infinity for cos(n)*pi / (n^2/3) and I am doing the Ratio Test. I found the limit approaches 1 but is less than 1. Does this mean that the limit = 1 or is < 1? I am somewhat confused since this changes it from inconclusive to convergent.
 
Physics news on Phys.org
Re: Ration Test Questions/ Series Convergence

calcboi said:
I am trying to determine convergence for the series n=1 to infinity for cos(n)*pi / (n^2/3) and I am doing the Ratio Test. I found the limit approaches 1 but is less than 1. Does this mean that the limit = 1 or is < 1? I am somewhat confused since this changes it from inconclusive to convergent.
Hello,
When it says lim x->1 it means x goes to 1 but not actually equal to 1. We aproximite. I would like someone to Approve that what I say is correct. I am sure but when it comes to help other i somehow get uncertain

Edit: If you want less Then 1 I think you Will lim x->1 (negative way)
 
Last edited:
calcboi said:
I am trying to determine convergence for the series n=1 to infinity for cos(n)*pi / (n^2/3) and I am doing the Ratio Test. I found the limit approaches 1 but is less than 1. Does this mean that the limit = 1 or is < 1? I am somewhat confused since this changes it from inconclusive to convergent.

The ratio test can be applied to the series with only positive or negative terms. Is Your series of this type?...

Kind regards$\chi$ $\sigma$
 
calcboi said:
I am trying to determine convergence for the series n=1 to infinity for cos(n)*pi / (n^2/3)

As has already been said, the ratio test is not convenient here. The series is $\displaystyle\sum_{n=1}^{\infty}\frac{\cos n\pi}{n^{2/3}}=\sum_{n=1}^{\infty}\frac{(-1)^n}{n^{2/3}}$, so the series of the absolute values is divergent (Riemann's series with $p=2/3\leq 1$). On the other hand by Leibniz criterion, the series is convergent. This implies that the given series is conditionally convergent.
 
Last edited:
Re: Ration Test Questions/ Series Convergence

Petrus said:
Hello,
When it says lim x->1 it means x goes to 1 but not actually equal to 1. We aproximite.

It means we are choosing some $$|x-1|<\delta$$ , which is a more general definition whether we are approaching from the right or the left. We can not say we are approximating the values of x since approximation has always a space of error.
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K