Philip Koeck
Gold Member
- 801
- 229
Got it. The two expressions are the same so I can replace both with a 3rd expression.vanhees71 said:From this
$$Y' \partial_x \sigma = X' \partial_y \sigma,$$
and this is a function of ##(x,y)##, which I can write in the Form ##X' Y'/\tau##. This shows that for functions with 2 independent variables for any inexact differential there's always an integrating factor, ##\tau##, such that
$$\mathrm{d} G/\tau=\mathrm{d} \sigma$$
is an exact differential.
The integration factor τ, which depends on x and y in general, is used to make the replacement correct. Something like that.
It will be interesting to read in the next chapter how this is applied to dS = d-Q / T.
(Couldn't find a crossed-out d.)
Somehow one also has to realize that this equation is only valid for a d-Q in a reversible process.