kurt101
- 285
- 35
No I meant 1 & 2 being entangled and 3 & 4 being entangled prior to BSM measurement. That is information that is fed into 2 & 3 that goes into the BSM. In particular this is true if measuring 1 affects 2 and measuring 4 affects 3. So again, the constraints of having to be indistinguishable and having been altered from entanglement is what is necessary for the QM math on the BSM, right?PeterDonis said:I don't see why this is a problem. If the necessary conditions (which you might not have correctly captured--see below) are not met for a particular experimental run, that run is simply a "no go" run where no entanglement swapping occurs. This sort of thing is expected for any experimental protocol where the experimenter does not have complete control over the conditions (in this case, whether a particular photon 2 & 3 pair will actually meet the indistinguishability condition).
If you mean 2 & 3, no, 2 & 3 are not entangled prior to the BSM. 1 &2 are entangled and 2 & 3 are entangled. Both of those entanglements are maximal, so no other entanglements are possible in the initially prepared state. (That is the monogamy of entanglement argument that @DrChinese has been making.)
So you can't just say there was no information given to 2 & 3 about 1 & 4 in order to make a correlation between 1 & 4.
The alternative to not accepting realism is having to accept that somehow 1 & 4 see the future? I find it so strange that so many are willing to throw out realism, because they have a suspicion that realism might not work. Just a suspicion, never definitive proof. I honestly don't get it and I would love for others to continue to explain why they don't just accept realism as fact since it has not been disproven.
If you measure many photons from 1 & 4 and then later do the Bell state test on photons 2 & 3, if done perfectly this divides the measurements of 1 & 4 into 4 subgroups, right? Subgroup 1 of 1 & 4 is not entangled with the other 3 subgroups, right? So whatever entanglement between 1 & 4 exists is divided up and 1 & 4 as a whole is not entangled. That is what I meant.PeterDonis said:What does "logical entanglement correlations" even mean?