Reducing NxN Matrix to 2x2 w/ Physical Constraints

Click For Summary

Discussion Overview

The discussion focuses on the reduction of an arbitrary symmetric NxN matrix to a 2x2 matrix using physical constraints. Participants explore methods for simplifying the system, particularly in the context of electrical networks, and seek guidance on applying linear algebra techniques to achieve this reduction.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant describes the goal of reducing a symmetric NxN matrix using auxiliary constraints, providing a specific example with a 3x3 matrix and expressing the desired output in terms of the original matrix elements.
  • Another participant suggests eliminating variables based on the constraints, proposing a method to express certain currents in terms of others, and provides derived equations for the voltages.
  • A later reply acknowledges the validity of the variable elimination approach but expresses concern about the tediousness of manual calculations when changing constraints or matrix order, indicating a preference for a programmatic solution.
  • Another participant presents the voltage and current constraints in matrix form, suggesting a general relationship and emphasizing the need to understand the implications of the inverse matrices involved.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method for achieving the matrix reduction. Multiple approaches are discussed, and there is no agreement on the best way to handle changes in constraints or the complexity of larger matrices.

Contextual Notes

Participants express uncertainty regarding the implications of matrix inverses and the complexity of calculations as the size of the matrix increases. There are also indications that the discussion may depend on specific definitions and assumptions related to the constraints used.

waynewec
Messages
2
Reaction score
0
TL;DR
Reducing an NxN matrix to a 2x2 by application of physical constraints
Gonna preface by saying I never thought linear algebra would be a class I would regret not taking so much... but in short the goal is to reduce an arbitrary symmetric NxN system using a set of auxiliary constraint relationships, e.g. for a 3x3

<br /> \begin{bmatrix}<br /> V_1\\<br /> V_2\\<br /> V_3\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> L_{e11}&amp;L_{e12}&amp;L_{e12}\\<br /> L_{e21}&amp;L_{e22}&amp;L_{e23}\\<br /> L_{e31}&amp;L_{e32}&amp;L_{e33}\\<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> i_1\\<br /> i_2\\<br /> i_3\\<br /> \end{bmatrix}\\<br />
using the following constraints
##V_1=V_2=V_p##
##V_3=V_s##
##i_p=i_1+i_2##
##i_s=i_3##
to end up with an equivalent system with L_s, L_p, and M in terms of the starting L_{eij} matrix
<br /> \begin{bmatrix}<br /> V_p\\<br /> V_s\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> L_p&amp;M\\<br /> M&amp;L_s\\<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> i_p\\<br /> i_s\\<br /> \end{bmatrix}<br />
For those interested in the context, this is an application specific usage of the method covered in https://onlinelibrary.wiley.com/doi/full/10.1002/eej.23240 but they glossed a bit over some of the key linear math that I don't understand. Eventually I'll be extending this concept to quite large matrices with more complex auxiliary constraints, but for now I'd appreciate some guidance, and some good resources, to get me goin
 
Last edited:
Physics news on Phys.org
Have you tried just eliminating variables? ##V_1 = V_2## relates ##i_n## making it possible to express ##i_1## in terms of ##i_p## and ##i_s##. Clearly, ##i_2 = i_p - i_1## and ##i_3 = i_s## eliminates ##i_2## and ##i_3##.

I get something like,

##V_p = (L_{11}-L_{12})i_1 + L_{12}i_p + L_{13}i_s##
## 0 = (L_{11}-L_{12})i_1 + (L_{12}-L_{22})(i_p-i_1) + (L_{13}-L_{23})i_s##
## V_s = (L_{31}-L_{32})i_1 + L_{32}i_p + L_{33}i_s##

Okay, just use the second equation to eliminate ##i_1##.
 
Paul Colby said:
Have you tried just eliminating variables? ##V_1 = V_2## relates ##i_n## making it possible to express ##i_1## in terms of ##i_p## and ##i_s##. Clearly, ##i_2 = i_p - i_1## and ##i_3 = i_s## eliminates ##i_2## and ##i_3##.

I get something like,

##V_p = (L_{11}-L_{12})i_1 + L_{12}i_p + L_{13}i_s##
## 0 = (L_{11}-L_{12})i_1 + (L_{12}-L_{22})(i_p-i_1) + (L_{13}-L_{23})i_s##
## V_s = (L_{31}-L_{32})i_1 + L_{32}i_p + L_{33}i_s##

Okay, just use the second equation to eliminate ##i_1##.
Absolutely valid, and an approach I've used, but any changes made to constraints or the order of the input matrix requires extremely tedious manual calculations. I was hoping for a direction that relies on matrix mathematics and could be implemented programmatically. 3x3, not so bad - 9x9 will make me want to kill myself
 
Well, okay. The voltage constrains in matrix form,

##\left(\begin{array}{c} V_1 \\ V_2 \\ V_3\end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{c} V_p \\ V_s\end{array}\right)##

The current constraints in matrix form,

##\left(\begin{array}{c} i_p \\ i_s \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c} i_1 \\ i_2 \\ i_3 \end{array}\right)##

More generaly,

##V = C V_c##

and

##I_c = D I##

Clearly,

##V_c = C^{-1} L D^{-1} I_c##

is the solution. All you need to do is figure out what ##C^{-1}## and ##D^{-1}## really mean.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
18K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 9 ·
Replies
9
Views
14K
  • · Replies 3 ·
Replies
3
Views
4K