I Reducing NxN Matrix to 2x2 w/ Physical Constraints

waynewec
Messages
2
Reaction score
0
TL;DR
Reducing an NxN matrix to a 2x2 by application of physical constraints
Gonna preface by saying I never thought linear algebra would be a class I would regret not taking so much... but in short the goal is to reduce an arbitrary symmetric NxN system using a set of auxiliary constraint relationships, e.g. for a 3x3

<br /> \begin{bmatrix}<br /> V_1\\<br /> V_2\\<br /> V_3\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> L_{e11}&amp;L_{e12}&amp;L_{e12}\\<br /> L_{e21}&amp;L_{e22}&amp;L_{e23}\\<br /> L_{e31}&amp;L_{e32}&amp;L_{e33}\\<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> i_1\\<br /> i_2\\<br /> i_3\\<br /> \end{bmatrix}\\<br />
using the following constraints
##V_1=V_2=V_p##
##V_3=V_s##
##i_p=i_1+i_2##
##i_s=i_3##
to end up with an equivalent system with L_s, L_p, and M in terms of the starting L_{eij} matrix
<br /> \begin{bmatrix}<br /> V_p\\<br /> V_s\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> L_p&amp;M\\<br /> M&amp;L_s\\<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> i_p\\<br /> i_s\\<br /> \end{bmatrix}<br />
For those interested in the context, this is an application specific usage of the method covered in https://onlinelibrary.wiley.com/doi/full/10.1002/eej.23240 but they glossed a bit over some of the key linear math that I don't understand. Eventually I'll be extending this concept to quite large matrices with more complex auxiliary constraints, but for now I'd appreciate some guidance, and some good resources, to get me goin
 
Last edited:
Physics news on Phys.org
Have you tried just eliminating variables? ##V_1 = V_2## relates ##i_n## making it possible to express ##i_1## in terms of ##i_p## and ##i_s##. Clearly, ##i_2 = i_p - i_1## and ##i_3 = i_s## eliminates ##i_2## and ##i_3##.

I get something like,

##V_p = (L_{11}-L_{12})i_1 + L_{12}i_p + L_{13}i_s##
## 0 = (L_{11}-L_{12})i_1 + (L_{12}-L_{22})(i_p-i_1) + (L_{13}-L_{23})i_s##
## V_s = (L_{31}-L_{32})i_1 + L_{32}i_p + L_{33}i_s##

Okay, just use the second equation to eliminate ##i_1##.
 
Paul Colby said:
Have you tried just eliminating variables? ##V_1 = V_2## relates ##i_n## making it possible to express ##i_1## in terms of ##i_p## and ##i_s##. Clearly, ##i_2 = i_p - i_1## and ##i_3 = i_s## eliminates ##i_2## and ##i_3##.

I get something like,

##V_p = (L_{11}-L_{12})i_1 + L_{12}i_p + L_{13}i_s##
## 0 = (L_{11}-L_{12})i_1 + (L_{12}-L_{22})(i_p-i_1) + (L_{13}-L_{23})i_s##
## V_s = (L_{31}-L_{32})i_1 + L_{32}i_p + L_{33}i_s##

Okay, just use the second equation to eliminate ##i_1##.
Absolutely valid, and an approach I've used, but any changes made to constraints or the order of the input matrix requires extremely tedious manual calculations. I was hoping for a direction that relies on matrix mathematics and could be implemented programmatically. 3x3, not so bad - 9x9 will make me want to kill myself
 
Well, okay. The voltage constrains in matrix form,

##\left(\begin{array}{c} V_1 \\ V_2 \\ V_3\end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{c} V_p \\ V_s\end{array}\right)##

The current constraints in matrix form,

##\left(\begin{array}{c} i_p \\ i_s \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c} i_1 \\ i_2 \\ i_3 \end{array}\right)##

More generaly,

##V = C V_c##

and

##I_c = D I##

Clearly,

##V_c = C^{-1} L D^{-1} I_c##

is the solution. All you need to do is figure out what ##C^{-1}## and ##D^{-1}## really mean.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
17K
  • · Replies 9 ·
Replies
9
Views
14K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
4K