- #1
k1902
- 3
- 0
Homework Statement
Let In = ∫x(cos^n(x)) with limits between x=π/2, x=0 for n≥0
i) Show that nIn=(n-1)In-2 -n^-1 for n≥2
ii) Find the exact value of I3
Homework Equations
∫u'v = uv-∫uv' is what I use for these questions
The Attempt at a Solution
Rewritten as ∫ xcos^n-1(x) cosx
u'=cosx v= xcos^n-1x
u= sinx v'= cos^n-1 -x(n-1)sinxcos^n-2x
But I can't seem to write it in the form it asks for.