I Relativistic Lagrangian of a particle in EM field

Click For Summary
The discussion focuses on the derivation of the relativistic Lagrangian for a particle in an electromagnetic (EM) field, following Lancaster and Blundell. It begins with the free particle Lagrangian and incorporates the EM potential energy, raising a question about the addition versus subtraction of terms. The importance of gauge invariance is emphasized, as the physics is described by the four-potential modulo an arbitrary four-gradient. The Lagrangian is constructed to be both Poincaré invariant and invariant under reparametrizations of the worldline, ensuring consistency in the equations of motion. Ultimately, the discussion concludes that the derived Lagrangian respects gauge invariance while aligning with relativistic principles.
Hill
Messages
735
Reaction score
576
TL;DR
Why is the potential energy of EM field added to the Lagrangian?
I'm following the derivation in Lancaster and Blundell. First, the Lagrangian for the free particle is ##L=-\frac {mc^2} {\gamma}## and the action ##S=\int -\frac {mc^2} {\gamma} \, dt##. Then, EM is "turned on" with the potential energy ##-qA_{\mu}dx^{\mu}##. Then, they say, the action becomes $$S=\int \, -\frac {mc^2} {\gamma} \, dt \, -qA_{\mu}dx^{\mu}$$.
My question is, why the EM potential energy has been added rather than subtracted?
 
Physics news on Phys.org
The potential energy is ##qV - q\vec A \cdot \vec v = qA_{\mu}dx^{\mu}##. The negative sign crept in a step too early by the looks of things.
 
The point is not so much relativistic vs. non-relativistic dynamics but gauge invariance, but it's of course most elegant to argue for the Lagrangian using relativistic arguments, because electromagnetism is a relativistic theory since Maxwell discovered it although it took about 40 years to fully understand this in Einstein's famous paper of 1905.

The first observation is that to write down manifestly covariant consistent equations of motion for a point particle in relstivistic physics it's most easy to parametrize the worldline of the particle in Minkowski space and then deriving these equations of motion from the Hamilton variational principle. The most simple argument is to aim for an action which is (a) Poincare invariant and (b) invariant under reparametrizations of the worldline.

For the latter demand it's obviously sufficient to make the Lagrangian a first-order homegeneous function in the ##\dot{x}^{\mu}##, where the dot refers to the derivative with respect to the arbitrary world-line parameter, ##\lambda##, i.e., we demand that
$$L(x,\alpha \dot{x})=\alpha L(x,\dot{x}),$$
because then the action
$$S[x]=\int_{\lambda_1}^{\lambda_2} \mathrm{d} \lambda L(x,\dot{x})$$
is invariant under arbitrary reparametrizations ##\lambda \rightarrow \lambda'## since we have
$$\mathrm{d}_{\lambda} x^{\mu} = \frac{\mathrm{d} \lambda'}{\mathrm{d} \lambda} \mathrm{d}_{\lambda'} x=\alpha \mathrm{d}_{\lambda'} x$$
On the other hand
$$\mathrm{d} \lambda = \mathrm{d} \lambda' \frac{\mathrm{d} \lambda}{\mathrm{d} \lambda'}=\mathrm{d} \lambda'/\alpha.$$
So you get
$$A[x]=\int_{\lambda_1'}^{\lambda_2'} \mathrm{d} \lambda' \frac{1}{\alpha} L[x(\lambda'), \alpha \mathrm{d}_{\lambda' x}(\lambda)] = \int_{\lambda_1'}^{\lambda_2'} \mathrm{d} \lambda' L[x(\lambda'),\mathrm{d}_{\lambda'} x(\lambda')].$$
For the free particle from translation invariance in time and space you get
$$L_0=L_0(\dot{x}).$$
Then the only Lorentz invariant quantity homogeneous in first order in ##\dot{x}## is ##\sqrt{\dot{x} \cdot \dot{x}}##, i.e.,
$$L_0=C \sqrt{\dot{x} \cdot \dot{x}}.$$
Choosing the coordinate time as parameter, as is usual in Newtonian physics, you get
$$L_0=C \sqrt{c^2-\mathrm{d}_t \vec{x}^2}=C c \sqrt{1-\beta^2}.$$
The non-relativistic limit follows for ##\beta \rightarrow 0##,
$$L_0=C c (1-\beta^2/2)=C c[1-v^2/(2c^2)].$$
In order to get the right free-particle Newtonian limit, ##L_0=m v^2/2 + \text{const}## you must choose ##C=-mc##, i.e.,
$$L_0=-m c^2 \sqrt{1-\beta^2} = - m c \sqrt{c^2-v^2} = -m c \sqrt{(\mathrm{d}_t x) \cdot \mathrm{d}_t x)}.$$
Since now the action is parametrization invariant by construction, this holds for any parametrization of the world line, i.e.,
$$L_0=-m c \sqrt{\dot{x} \cdot \dot{x}}.$$
Further we know that the electromagnetic field can be derived from a four-potential,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
The most simple interaction Lagrangian with a four-vector field and homogeneous in first order in ##\dot{x}## obviously is
$$L_{\text{int}}=C \dot{x} \cdot A.$$
It turns out that you get the correct relativistic version of the Lorentz force by choosing ##C=-q/c## (in Heaviside-Lorentz units), i.e.,
$$L_{\text{int}}=-\frac{q}{c} \dot{x} \cdot A.$$
Now it is also important to note that we must get a gauge invariant action since the physics is not described by the four-potential, ##A## but by the four-potential modulo an arbitrary four-gradient, i.e.,
$$A_{\mu}'=A_{\mu} +\partial_{\mu} \chi$$
must give the same equations of motion as ##A##, and this is the case for our "minimal ansatz" too, because under this "gauge transformation" the interaction Lagrangian changes to
$$L_{\text{int}}'=-\frac{q}{c} \dot{x}^{\mu} (A_{\mu} + \partial_{\mu} \chi) = -\frac{q}{c} \dot{x} \cdot A - \frac{q}{c} \mathrm{d}_\lambda \chi,$$
i.e., ##L'## differs from ##L## only by an additive total ##\lambda## deriviative which doesn't change the equations of motion. So the gauge transformation leads to an equivalent Lagrangian and thus the equation of states are gauge invariant as it must be.
 
vanhees71 said:
The point is not so much relativistic vs. non-relativistic dynamics but gauge invariance, but it's of course most elegant to argue for the Lagrangian using relativistic arguments, because electromagnetism is a relativistic theory since Maxwell discovered it although it took about 40 years to fully understand this in Einstein's famous paper of 1905.

The first observation is that to write down manifestly covariant consistent equations of motion for a point particle in relstivistic physics it's most easy to parametrize the worldline of the particle in Minkowski space and then deriving these equations of motion from the Hamilton variational principle. The most simple argument is to aim for an action which is (a) Poincare invariant and (b) invariant under reparametrizations of the worldline.

For the latter demand it's obviously sufficient to make the Lagrangian a first-order homegeneous function in the ##\dot{x}^{\mu}##, where the dot refers to the derivative with respect to the arbitrary world-line parameter, ##\lambda##, i.e., we demand that
$$L(x,\alpha \dot{x})=\alpha L(x,\dot{x}),$$
because then the action
$$S[x]=\int_{\lambda_1}^{\lambda_2} \mathrm{d} \lambda L(x,\dot{x})$$
is invariant under arbitrary reparametrizations ##\lambda \rightarrow \lambda'## since we have
$$\mathrm{d}_{\lambda} x^{\mu} = \frac{\mathrm{d} \lambda'}{\mathrm{d} \lambda} \mathrm{d}_{\lambda'} x=\alpha \mathrm{d}_{\lambda'} x$$
On the other hand
$$\mathrm{d} \lambda = \mathrm{d} \lambda' \frac{\mathrm{d} \lambda}{\mathrm{d} \lambda'}=\mathrm{d} \lambda'/\alpha.$$
So you get
$$A[x]=\int_{\lambda_1'}^{\lambda_2'} \mathrm{d} \lambda' \frac{1}{\alpha} L[x(\lambda'), \alpha \mathrm{d}_{\lambda' x}(\lambda)] = \int_{\lambda_1'}^{\lambda_2'} \mathrm{d} \lambda' L[x(\lambda'),\mathrm{d}_{\lambda'} x(\lambda')].$$
For the free particle from translation invariance in time and space you get
$$L_0=L_0(\dot{x}).$$
Then the only Lorentz invariant quantity homogeneous in first order in ##\dot{x}## is ##\sqrt{\dot{x} \cdot \dot{x}}##, i.e.,
$$L_0=C \sqrt{\dot{x} \cdot \dot{x}}.$$
Choosing the coordinate time as parameter, as is usual in Newtonian physics, you get
$$L_0=C \sqrt{c^2-\mathrm{d}_t \vec{x}^2}=C c \sqrt{1-\beta^2}.$$
The non-relativistic limit follows for ##\beta \rightarrow 0##,
$$L_0=C c (1-\beta^2/2)=C c[1-v^2/(2c^2)].$$
In order to get the right free-particle Newtonian limit, ##L_0=m v^2/2 + \text{const}## you must choose ##C=-mc##, i.e.,
$$L_0=-m c^2 \sqrt{1-\beta^2} = - m c \sqrt{c^2-v^2} = -m c \sqrt{(\mathrm{d}_t x) \cdot \mathrm{d}_t x)}.$$
Since now the action is parametrization invariant by construction, this holds for any parametrization of the world line, i.e.,
$$L_0=-m c \sqrt{\dot{x} \cdot \dot{x}}.$$
Further we know that the electromagnetic field can be derived from a four-potential,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
The most simple interaction Lagrangian with a four-vector field and homogeneous in first order in ##\dot{x}## obviously is
$$L_{\text{int}}=C \dot{x} \cdot A.$$
It turns out that you get the correct relativistic version of the Lorentz force by choosing ##C=-q/c## (in Heaviside-Lorentz units), i.e.,
$$L_{\text{int}}=-\frac{q}{c} \dot{x} \cdot A.$$
Now it is also important to note that we must get a gauge invariant action since the physics is not described by the four-potential, ##A## but by the four-potential modulo an arbitrary four-gradient, i.e.,
$$A_{\mu}'=A_{\mu} +\partial_{\mu} \chi$$
must give the same equations of motion as ##A##, and this is the case for our "minimal ansatz" too, because under this "gauge transformation" the interaction Lagrangian changes to
$$L_{\text{int}}'=-\frac{q}{c} \dot{x}^{\mu} (A_{\mu} + \partial_{\mu} \chi) = -\frac{q}{c} \dot{x} \cdot A - \frac{q}{c} \mathrm{d}_\lambda \chi,$$
i.e., ##L'## differs from ##L## only by an additive total ##\lambda## deriviative which doesn't change the equations of motion. So the gauge transformation leads to an equivalent Lagrangian and thus the equation of states are gauge invariant as it must be.
Thanks a lot. As a summary, to write down the Lagrangian we've involved the Poincare invariance, the reparameterization invariance, the Newtonian limit, and the Lorentz force law. Then, we've checked that this Lagrangian obeys gauge invariance.
 
  • Like
Likes vanhees71 and PeroK
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...