I Relativistic Mass Oscillation & Gravitational Field at R

Devin
Messages
24
Reaction score
1
Let a mass oscillate with relativistic acceleration (sinusoidal) by means which are irrelevant. What does the gravitational field look like a distance R away?
 
Physics news on Phys.org
If one considers a sinusoidal mass oscillating in isolation, one finds that ##\nabla_a T^{ab}## is not equal to zero, while ##\nabla_a G^{ab} = 0##. As a consequence one cannot satisfy Einstein's field equations ##T^{ab} = 8 \pi G^{ab}## as taking the covariant derivative of each side yields the result that ##\nabla_a T^{ab} = \nabla_a G^{ab}##, but this is not possible.

Thus one is lead to the conclusion that the means by which the mass is made to osscilate cannot be ignored.. Another way of saying this that may be simpler - one needs the source to conserve energy-momentum (the precise mathematical statement of this idea is that ##\nabla_a T^{ab} = 0## ) in order to be able to apply Einstein's field equations in the first place. And an oscillating mass doesn't do that by itself, it needs help.
 
  • Like
Likes Orodruin
pervect said:
If one considers a sinusoidal mass oscillating in isolation, one finds that ##\nabla_a T^{ab}## is not equal to zero, while ##\nabla_a G^{ab} = 0##. As a consequence one cannot satisfy Einstein's field equations ##T^{ab} = 8 \pi G^{ab}## as taking the covariant derivative of each side yields the result that ##\nabla_a T^{ab} = \nabla_a G^{ab}##, but this is not possible.

Thus one is lead to the conclusion that the means by which the mass is made to osscilate cannot be ignored.. Another way of saying this that may be simpler - one needs the source to conserve energy-momentum (the precise mathematical statement of this idea is that ##\nabla_a T^{ab} = 0## ) in order to be able to apply Einstein's field equations in the first place. And an oscillating mass doesn't do that by itself, it needs help.
What if perhaps we had a mechanism that made it such that the mass oscillates with constant /omega
 
The problem is that you need to specify the mechanism in detail. If I wave a charged body around there's a reaction that means that I wave slightly in the opposite direction. But I'm not charged, so for the purposes of electromagnetic fields we don't care about the details of how I'm waving the charge around.

However, if it's a mass I'm waving around and we want to know about gravitational fields then we can't ignore my mass and momentum. If the mass is big enough to be gravitationally significant I must be very big and strong, and I would also be a significant gravitational source. You can't ignore me without violating energy and momentum conservation which is "baked in" to Einstein's equations.

So there's no solution for "an oscillating mass", only for "a mass being oscillated by something".
 
"So there's no solution for "an oscillating mass", only for "a mass being oscillated by something".

Very well put. Expansion/contraction is one of the easiest ways to model oscillation. It depends only on the forces holding it together internally and the local conditions around it. It varies on a periodic basis both time wise, and as it travels through space. It is "a mechanism that made it such that the mass oscillates with constant". You can model the oscillating wave properties of a photon (http://www.animatedphysics.com/games/photon_oscillator.htm) and immediately see the significance of the Planck constant.
 
I think of some examples
- two massive bodies connected by a spring, and
- heated material that contains atoms in vibration.

Kinetic energy should increase gravitational force than the cases of no motion.
 
  • Like
Likes edguy99
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top