B Resistance Between Two Small Conducting Spheres

  • B
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Resistance
AI Thread Summary
The resistance between two small conducting spheres, each with radius r and separated by a distance d much greater than r, can be expressed as R = (ρ / (2πr)), where ρ is the resistivity of the material. Dimensional analysis suggests a constant factor c, which is determined to be 1/(2π) through integration of resistance to infinity. The discussion emphasizes the principle of superposition in analyzing the current fields generated by the spheres. The total resistance considers contributions from both spheres, leading to the conclusion that they are in series. This analysis provides a clear understanding of the resistance behavior in this configuration.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Here's a little snack; what is the resistance between two small conducting spheres, each of radius ##r##, separated by a distance ##d \gg r## within a material of resistivity ##\rho## (of infinite expanse)?
 
Last edited:
  • Like
Likes Hamiltonian, Keith_McClary and Baluncore
Physics news on Phys.org
In an infinite network of unit resistors ##R## in 3D the resistance between two points far apart is ##R≈0.5055Ω ## becoming independent of distance. I suspect this will also be a constant for large separation for two small spheres at ##d\gg r## independent of ##d##. Dimensional analysis gives ##R = \Large\frac{\rho}{r}##.
 
Last edited:
Nice intuition! However, dimensional analysis tells you that ##R = c \cdot \dfrac{\rho}{r}##, where ##c## is some dimensionless constant to be determined. A hint is to use the principle of superposition. :smile:
 
ergospherical said:
Nice intuition! However, dimensional analysis tells you that ##R = c \cdot \dfrac{\rho}{r}##, where ##c## is some dimensionless constant to be determined. A hint is to use the principle of superposition. :smile:
Well, that was research guided intuition, I don't think I could have come up with it totally out of the blue.

Given your hint, if we look at one sphere and integrate the total resistance to infinity it is;
$$R = \int_{r}^{∞} \large \frac{\rho}{4\pi r'^2} \,dr' = \large \frac{\rho}{4\pi r}$$ (Edit: where ##r## is the radius of the sphere).

But the other sphere also sees the same resistance out to infinity so if we think of a hypothetical current source injecting current at one sphere which goes to infinity and then returns from infinity into the other sphere, we have double the resistance, they are in series.

$$R = R_{in} + R_{out} = \large \frac{\rho}{4\pi r} + \large \frac{\rho}{4\pi r} = \large \frac{\rho}{2\pi r}$$

So the constant is ##\large\frac{1}{2\pi}##.
 
Last edited:
  • Like
Likes ergospherical
That looks like the correct factor, yeah! You can think of the situation as the result of superposing the radial current fields ##\mathbf{j}_{\pm} = \dfrac{1}{\rho} \mathbf{E}_{\pm} = \pm \dfrac{V}{2 \rho r} \mathbf{e}_r## of two spherical current sources of potential ##\pm \dfrac{V}{2}## and separated by a distance ##d##. In the limit of ##d \gg \tilde{r}##, the current emanating from the positive one (and entering the negative one) can be taken to have a contribution from only that particular source, ##I = \displaystyle{\int} \mathbf{j} \cdot d\mathbf{S} = \dfrac{2 \pi \tilde{r} V}{\rho}## (with the integral taken over a surface just outside the sphere), and the resistance is ##V/I = \dfrac{\rho}{2\pi \tilde{r}}##.

(N.B. edit: changed the radius of the spheres to ##\tilde{r}## to avoid confusion with the radial coordinate ##r##)
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top