Rewriting a given action via integration by parts

Click For Summary

Homework Help Overview

The discussion revolves around rewriting an action in the context of field theory, specifically using integration by parts. The participants are exploring the implications of varying a scalar field and how to manipulate the resulting expressions to achieve a desired form.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to express the action in terms of a perturbed field and are discussing the use of integration by parts to simplify the resulting integrals. Questions arise about how to handle specific terms and the assumptions made regarding the scalar field.

Discussion Status

There is an ongoing exploration of different approaches to rewriting the action. Some participants have provided partial results and insights, while others are questioning the validity of certain assumptions and terms. No explicit consensus has been reached, but there is a collaborative effort to clarify the steps involved.

Contextual Notes

Participants are working with specific forms of the action and are referencing lecture notes. There is mention of boundary terms being neglected in the integration by parts process, and the discussion includes the need to consider the equations of motion in the context of the problem.

JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Given the action

\begin{equation*}
S=\int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right]
\end{equation*}

Where the dot denotes differentiation with respect to the conformal time ##\eta##.



Show that by introducing small fluctuations to the scalar field ##\phi##.


\begin{equation*}
\phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x)
\end{equation*}


as well as defining ##\chi := a\delta \phi##, the action becomes


\begin{equation*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)

\end{equation*}
Relevant Equations
N/A
I simply plugged \phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x) into the given action to get

\begin{align}
S &= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right] \nonumber \\
&= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi_0^2 + (\delta \dot \phi)^2 + 2\dot \phi_0 \delta \dot \phi- (\nabla (\delta \phi))^2 \right)-a^4V(\phi_0) -a^4V(\delta \phi) \right] \\
&= \int d^4 x \left[ \underbrace{\frac{a^2}{2} \dot \phi_0^2 + a^2\dot \phi_0 \delta \dot \phi -a^4V(\phi_0)}_{S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right]
\end{align}
However, I am stuck in how to show that

\begin{equation*}
\int d^4 x \left[ \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right] = \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}

I am convinced we'll have to use integration by parts and let the surface term vanish but I do not see how to do so...

Any help is appreciated.

Thank you :biggrin:

This doubt emerged while studying the lecture notes of my course. I attach the relevant pages

LecNotes0.png

LecNotes1.png

LecNotes2.png
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Hey JD, did you ever figure out how to get the answer? I was just trying to do it now but got stuck as well. So far I'd just written ##V(\phi) = V(\phi_0) + \delta \phi V'(\phi_0)## and then\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\

&= S[\phi_0] + \int d^4 x [ a^2 \dot{\phi}_0 \left( \frac{\dot{\chi}}{a} - \frac{\dot{a} \chi}{a^2} \right) + \frac{a^2}{2} \left(\frac{\dot{\chi}^2}{a^2} - \frac{2\dot{a} \dot{\chi} \chi}{a^3} + \frac{\dot{a}^2 \chi^2}{a^4} \right) -a \nabla \phi_0 \cdot \nabla \chi \\

&\quad \quad \quad \quad \quad - \frac{1}{2} (\nabla \chi)^2 -a^4 \delta \phi V'(\phi_0)] \\

&= S[\phi_0] + \frac{1}{2} d^4 x \left[ \dot{\chi}^2 - (\nabla \chi)^2 + \underbrace{2a \dot{\phi}_0 \dot{\chi} + 2a \chi \ddot{\phi}_0 - \frac{2\dot{a} \dot{\chi} \chi}{a} + \frac{\dot{a}^2 \chi^2}{a^2} - 2a \nabla \phi_0 \cdot \nabla \chi} \right]
\end{align*}
in the last line I used that ##-a^2 V'(\phi_0) = \ddot{\phi}_0 + \frac{2\dot{a}}{a} \dot{\phi}_0##. But I'm at a loss about how to proceed :frown:
 
Last edited by a moderator:
  • Like
Likes   Reactions: JD_PM and Delta2
Hey James! Nice to see you taking the problem :biggrin:

etotheipi said:
\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\
\end{align*}

Notice that we are dealing with a homogeneous scalar field i.e. ##\partial_i \phi = 0## so the term ##2 \nabla \phi_0 \cdot \nabla \delta \phi## drops. Hence you'll agree with me that we start off by

\begin{equation*}
S=\int d^4 x \left( \underbrace{\frac{a^2}{2} \dot \phi_0^2 - a^4V(\phi_0)}_{= S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla \delta \phi)^2 +a^2\dot \phi_0 \delta \dot \phi - a^4 \delta \phi V'(\phi_0) \right)
\end{equation*}

To advance, you will need to work out the term ##\delta \phi## based on change of variables (39) in the attached pic. If it goes smooth you will find

\begin{align*}
S &= S[\phi_0] \nonumber \\
&+ \int d^4 \vec x \left[\frac{1}{2} \left( \dot \chi^2 - 2\frac{\dot a \chi \dot \chi}{a} + \frac{\dot a^2}{a^2} \chi^2 \right) -\frac 1 2 (\nabla \chi)^2 + a^2 \dot \phi_0 \delta \dot \phi - a^4\delta \phi V'(\phi_0)\right]
\end{align*}

Once we get here we will carry on :smile:
 
  • Like
Likes   Reactions: etotheipi
Yes these results are in agreement if ##2 \nabla \phi_0 \cdot \nabla \delta \phi = 0##, because if you substitute this term\begin{align*}
a^2 \dot{\phi}_0 \delta \dot{\phi} - a^4 \delta \phi V'(\phi) &= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a^2 \delta \phi \ddot{\phi}_0 + 2a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a \chi \ddot{\phi}_0 + \dot{a} \dot{\phi}_0 \chi \right] \\

&= a \dot{\chi} \dot{\phi}_0 + a \chi \ddot{\phi}_0

\end{align*}in your final expression, then you end up with my expression at the end of #2. :smile:
 
  • Like
Likes   Reactions: JD_PM
Good! At this point we notice that we already have 2 of the 3 terms in the desired final form. All we need to do is simplify.

Try to integrate by parts (IBP¨) the ##2\frac{\dot a \chi \dot \chi}{a}## term. Your action should simplify slightly. Then make use of the E.O.M. (37). Finally you will have to use IBP once again to get the final simplified action :)
 
  • Like
Likes   Reactions: etotheipi
Write\begin{align*}

-\int d^3 x d\eta \frac{2\dot{a}\chi \dot{\chi}}{a} &= - \int d^3 x d\eta \frac{\dot{a}}{a} \frac{d}{d\eta} \left( \chi^2 \right) \\

&= -\int d^3 x d\eta \left[ \frac{d}{d\eta} \left( \frac{\dot{a}}{a} \chi^2 \right) - \chi^2 \left( \frac{a\ddot{a} - \dot{a}^2}{a^2} \right) \right] \\

&= \phantom{-} \int d^3 x d\eta \left( \frac{\ddot{a}}{a} \chi^2 - \frac{\dot{a}^2}{a^2} \chi^2 \right)

\end{align*}where the boundary term was thrown away. The expression becomes\begin{align*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 + 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right]

\end{align*}Now use equation ##(37)## to re-write ##2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi = -2a^4 \delta \phi V'(\phi_0)##, such that\begin{align*}
\int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right] &= \int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi +2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= \int d^3 x d\eta \left[ \frac{d}{d\eta} \left( 2a^2 \dot{\phi}_0 \delta \phi \right)\right] \\

&=0

\end{align*}again neglecting the boundary term. Hence\begin{align*}
S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 \right]
\end{align*}:smile:
 
  • Like
Likes   Reactions: JD_PM

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
27
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
3
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
12K