Rewriting a given action via integration by parts

Click For Summary
SUMMARY

The discussion focuses on the process of rewriting an action in the context of field theory using integration by parts. Participants detail the steps taken to express the action in terms of a homogeneous scalar field, specifically \(\phi = \phi_0(\eta) + \delta \phi(\eta, \vec{x})\). The challenge lies in demonstrating the equivalence of two integral expressions involving the scalar field and its variations. Key equations include the action \(S\) and the integration by parts technique to simplify terms, ultimately leading to the desired form of the action.

PREREQUISITES
  • Understanding of scalar field theory and actions in physics
  • Familiarity with integration by parts in multiple dimensions
  • Knowledge of variational principles in field theory
  • Proficiency in manipulating differential equations and boundary conditions
NEXT STEPS
  • Study the application of integration by parts in field theory contexts
  • Learn about the derivation and implications of the Euler-Lagrange equations
  • Explore the concept of homogeneous scalar fields and their properties
  • Investigate the role of boundary terms in variational calculus
USEFUL FOR

Physicists, particularly those specializing in theoretical physics, graduate students studying field theory, and researchers working on scalar field dynamics and actions.

JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Given the action

\begin{equation*}
S=\int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right]
\end{equation*}

Where the dot denotes differentiation with respect to the conformal time ##\eta##.



Show that by introducing small fluctuations to the scalar field ##\phi##.


\begin{equation*}
\phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x)
\end{equation*}


as well as defining ##\chi := a\delta \phi##, the action becomes


\begin{equation*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)

\end{equation*}
Relevant Equations
N/A
I simply plugged \phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x) into the given action to get

\begin{align}
S &= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right] \nonumber \\
&= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi_0^2 + (\delta \dot \phi)^2 + 2\dot \phi_0 \delta \dot \phi- (\nabla (\delta \phi))^2 \right)-a^4V(\phi_0) -a^4V(\delta \phi) \right] \\
&= \int d^4 x \left[ \underbrace{\frac{a^2}{2} \dot \phi_0^2 + a^2\dot \phi_0 \delta \dot \phi -a^4V(\phi_0)}_{S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right]
\end{align}
However, I am stuck in how to show that

\begin{equation*}
\int d^4 x \left[ \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right] = \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}

I am convinced we'll have to use integration by parts and let the surface term vanish but I do not see how to do so...

Any help is appreciated.

Thank you :biggrin:

This doubt emerged while studying the lecture notes of my course. I attach the relevant pages

LecNotes0.png

LecNotes1.png

LecNotes2.png
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Hey JD, did you ever figure out how to get the answer? I was just trying to do it now but got stuck as well. So far I'd just written ##V(\phi) = V(\phi_0) + \delta \phi V'(\phi_0)## and then\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\

&= S[\phi_0] + \int d^4 x [ a^2 \dot{\phi}_0 \left( \frac{\dot{\chi}}{a} - \frac{\dot{a} \chi}{a^2} \right) + \frac{a^2}{2} \left(\frac{\dot{\chi}^2}{a^2} - \frac{2\dot{a} \dot{\chi} \chi}{a^3} + \frac{\dot{a}^2 \chi^2}{a^4} \right) -a \nabla \phi_0 \cdot \nabla \chi \\

&\quad \quad \quad \quad \quad - \frac{1}{2} (\nabla \chi)^2 -a^4 \delta \phi V'(\phi_0)] \\

&= S[\phi_0] + \frac{1}{2} d^4 x \left[ \dot{\chi}^2 - (\nabla \chi)^2 + \underbrace{2a \dot{\phi}_0 \dot{\chi} + 2a \chi \ddot{\phi}_0 - \frac{2\dot{a} \dot{\chi} \chi}{a} + \frac{\dot{a}^2 \chi^2}{a^2} - 2a \nabla \phi_0 \cdot \nabla \chi} \right]
\end{align*}
in the last line I used that ##-a^2 V'(\phi_0) = \ddot{\phi}_0 + \frac{2\dot{a}}{a} \dot{\phi}_0##. But I'm at a loss about how to proceed :frown:
 
Last edited by a moderator:
  • Like
Likes   Reactions: JD_PM and Delta2
Hey James! Nice to see you taking the problem :biggrin:

etotheipi said:
\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\
\end{align*}

Notice that we are dealing with a homogeneous scalar field i.e. ##\partial_i \phi = 0## so the term ##2 \nabla \phi_0 \cdot \nabla \delta \phi## drops. Hence you'll agree with me that we start off by

\begin{equation*}
S=\int d^4 x \left( \underbrace{\frac{a^2}{2} \dot \phi_0^2 - a^4V(\phi_0)}_{= S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla \delta \phi)^2 +a^2\dot \phi_0 \delta \dot \phi - a^4 \delta \phi V'(\phi_0) \right)
\end{equation*}

To advance, you will need to work out the term ##\delta \phi## based on change of variables (39) in the attached pic. If it goes smooth you will find

\begin{align*}
S &= S[\phi_0] \nonumber \\
&+ \int d^4 \vec x \left[\frac{1}{2} \left( \dot \chi^2 - 2\frac{\dot a \chi \dot \chi}{a} + \frac{\dot a^2}{a^2} \chi^2 \right) -\frac 1 2 (\nabla \chi)^2 + a^2 \dot \phi_0 \delta \dot \phi - a^4\delta \phi V'(\phi_0)\right]
\end{align*}

Once we get here we will carry on :smile:
 
  • Like
Likes   Reactions: etotheipi
Yes these results are in agreement if ##2 \nabla \phi_0 \cdot \nabla \delta \phi = 0##, because if you substitute this term\begin{align*}
a^2 \dot{\phi}_0 \delta \dot{\phi} - a^4 \delta \phi V'(\phi) &= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a^2 \delta \phi \ddot{\phi}_0 + 2a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a \chi \ddot{\phi}_0 + \dot{a} \dot{\phi}_0 \chi \right] \\

&= a \dot{\chi} \dot{\phi}_0 + a \chi \ddot{\phi}_0

\end{align*}in your final expression, then you end up with my expression at the end of #2. :smile:
 
  • Like
Likes   Reactions: JD_PM
Good! At this point we notice that we already have 2 of the 3 terms in the desired final form. All we need to do is simplify.

Try to integrate by parts (IBP¨) the ##2\frac{\dot a \chi \dot \chi}{a}## term. Your action should simplify slightly. Then make use of the E.O.M. (37). Finally you will have to use IBP once again to get the final simplified action :)
 
  • Like
Likes   Reactions: etotheipi
Write\begin{align*}

-\int d^3 x d\eta \frac{2\dot{a}\chi \dot{\chi}}{a} &= - \int d^3 x d\eta \frac{\dot{a}}{a} \frac{d}{d\eta} \left( \chi^2 \right) \\

&= -\int d^3 x d\eta \left[ \frac{d}{d\eta} \left( \frac{\dot{a}}{a} \chi^2 \right) - \chi^2 \left( \frac{a\ddot{a} - \dot{a}^2}{a^2} \right) \right] \\

&= \phantom{-} \int d^3 x d\eta \left( \frac{\ddot{a}}{a} \chi^2 - \frac{\dot{a}^2}{a^2} \chi^2 \right)

\end{align*}where the boundary term was thrown away. The expression becomes\begin{align*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 + 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right]

\end{align*}Now use equation ##(37)## to re-write ##2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi = -2a^4 \delta \phi V'(\phi_0)##, such that\begin{align*}
\int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right] &= \int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi +2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= \int d^3 x d\eta \left[ \frac{d}{d\eta} \left( 2a^2 \dot{\phi}_0 \delta \phi \right)\right] \\

&=0

\end{align*}again neglecting the boundary term. Hence\begin{align*}
S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 \right]
\end{align*}:smile:
 
  • Like
Likes   Reactions: JD_PM

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
27
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
3
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
12K