Rewriting a given action via integration by parts

AI Thread Summary
The discussion focuses on rewriting an action using integration by parts, specifically for a scalar field action involving perturbations. The participants detail their attempts to express the action in a form that highlights the contributions from the background field and the perturbations. They encounter challenges in simplifying terms and using integration by parts effectively, particularly in relation to surface terms. The conversation emphasizes the importance of recognizing homogeneous conditions and applying equations of motion to facilitate simplification. Ultimately, they aim to derive the desired expression for the action, confirming the necessity of careful manipulation of terms and integration techniques.
JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Given the action

\begin{equation*}
S=\int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right]
\end{equation*}

Where the dot denotes differentiation with respect to the conformal time ##\eta##.



Show that by introducing small fluctuations to the scalar field ##\phi##.


\begin{equation*}
\phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x)
\end{equation*}


as well as defining ##\chi := a\delta \phi##, the action becomes


\begin{equation*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)

\end{equation*}
Relevant Equations
N/A
I simply plugged \phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x) into the given action to get

\begin{align}
S &= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right] \nonumber \\
&= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi_0^2 + (\delta \dot \phi)^2 + 2\dot \phi_0 \delta \dot \phi- (\nabla (\delta \phi))^2 \right)-a^4V(\phi_0) -a^4V(\delta \phi) \right] \\
&= \int d^4 x \left[ \underbrace{\frac{a^2}{2} \dot \phi_0^2 + a^2\dot \phi_0 \delta \dot \phi -a^4V(\phi_0)}_{S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right]
\end{align}
However, I am stuck in how to show that

\begin{equation*}
\int d^4 x \left[ \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right] = \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}

I am convinced we'll have to use integration by parts and let the surface term vanish but I do not see how to do so...

Any help is appreciated.

Thank you :biggrin:

This doubt emerged while studying the lecture notes of my course. I attach the relevant pages

LecNotes0.png

LecNotes1.png

LecNotes2.png
 
Physics news on Phys.org
Hey JD, did you ever figure out how to get the answer? I was just trying to do it now but got stuck as well. So far I'd just written ##V(\phi) = V(\phi_0) + \delta \phi V'(\phi_0)## and then\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\

&= S[\phi_0] + \int d^4 x [ a^2 \dot{\phi}_0 \left( \frac{\dot{\chi}}{a} - \frac{\dot{a} \chi}{a^2} \right) + \frac{a^2}{2} \left(\frac{\dot{\chi}^2}{a^2} - \frac{2\dot{a} \dot{\chi} \chi}{a^3} + \frac{\dot{a}^2 \chi^2}{a^4} \right) -a \nabla \phi_0 \cdot \nabla \chi \\

&\quad \quad \quad \quad \quad - \frac{1}{2} (\nabla \chi)^2 -a^4 \delta \phi V'(\phi_0)] \\

&= S[\phi_0] + \frac{1}{2} d^4 x \left[ \dot{\chi}^2 - (\nabla \chi)^2 + \underbrace{2a \dot{\phi}_0 \dot{\chi} + 2a \chi \ddot{\phi}_0 - \frac{2\dot{a} \dot{\chi} \chi}{a} + \frac{\dot{a}^2 \chi^2}{a^2} - 2a \nabla \phi_0 \cdot \nabla \chi} \right]
\end{align*}
in the last line I used that ##-a^2 V'(\phi_0) = \ddot{\phi}_0 + \frac{2\dot{a}}{a} \dot{\phi}_0##. But I'm at a loss about how to proceed :frown:
 
Last edited by a moderator:
  • Like
Likes JD_PM and Delta2
Hey James! Nice to see you taking the problem :biggrin:

etotheipi said:
\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\
\end{align*}

Notice that we are dealing with a homogeneous scalar field i.e. ##\partial_i \phi = 0## so the term ##2 \nabla \phi_0 \cdot \nabla \delta \phi## drops. Hence you'll agree with me that we start off by

\begin{equation*}
S=\int d^4 x \left( \underbrace{\frac{a^2}{2} \dot \phi_0^2 - a^4V(\phi_0)}_{= S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla \delta \phi)^2 +a^2\dot \phi_0 \delta \dot \phi - a^4 \delta \phi V'(\phi_0) \right)
\end{equation*}

To advance, you will need to work out the term ##\delta \phi## based on change of variables (39) in the attached pic. If it goes smooth you will find

\begin{align*}
S &= S[\phi_0] \nonumber \\
&+ \int d^4 \vec x \left[\frac{1}{2} \left( \dot \chi^2 - 2\frac{\dot a \chi \dot \chi}{a} + \frac{\dot a^2}{a^2} \chi^2 \right) -\frac 1 2 (\nabla \chi)^2 + a^2 \dot \phi_0 \delta \dot \phi - a^4\delta \phi V'(\phi_0)\right]
\end{align*}

Once we get here we will carry on :smile:
 
Yes these results are in agreement if ##2 \nabla \phi_0 \cdot \nabla \delta \phi = 0##, because if you substitute this term\begin{align*}
a^2 \dot{\phi}_0 \delta \dot{\phi} - a^4 \delta \phi V'(\phi) &= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a^2 \delta \phi \ddot{\phi}_0 + 2a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a \chi \ddot{\phi}_0 + \dot{a} \dot{\phi}_0 \chi \right] \\

&= a \dot{\chi} \dot{\phi}_0 + a \chi \ddot{\phi}_0

\end{align*}in your final expression, then you end up with my expression at the end of #2. :smile:
 
Good! At this point we notice that we already have 2 of the 3 terms in the desired final form. All we need to do is simplify.

Try to integrate by parts (IBP¨) the ##2\frac{\dot a \chi \dot \chi}{a}## term. Your action should simplify slightly. Then make use of the E.O.M. (37). Finally you will have to use IBP once again to get the final simplified action :)
 
Write\begin{align*}

-\int d^3 x d\eta \frac{2\dot{a}\chi \dot{\chi}}{a} &= - \int d^3 x d\eta \frac{\dot{a}}{a} \frac{d}{d\eta} \left( \chi^2 \right) \\

&= -\int d^3 x d\eta \left[ \frac{d}{d\eta} \left( \frac{\dot{a}}{a} \chi^2 \right) - \chi^2 \left( \frac{a\ddot{a} - \dot{a}^2}{a^2} \right) \right] \\

&= \phantom{-} \int d^3 x d\eta \left( \frac{\ddot{a}}{a} \chi^2 - \frac{\dot{a}^2}{a^2} \chi^2 \right)

\end{align*}where the boundary term was thrown away. The expression becomes\begin{align*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 + 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right]

\end{align*}Now use equation ##(37)## to re-write ##2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi = -2a^4 \delta \phi V'(\phi_0)##, such that\begin{align*}
\int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right] &= \int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi +2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= \int d^3 x d\eta \left[ \frac{d}{d\eta} \left( 2a^2 \dot{\phi}_0 \delta \phi \right)\right] \\

&=0

\end{align*}again neglecting the boundary term. Hence\begin{align*}
S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 \right]
\end{align*}:smile:
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top