Rewriting a given action via integration by parts

JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Given the action

\begin{equation*}
S=\int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right]
\end{equation*}

Where the dot denotes differentiation with respect to the conformal time ##\eta##.



Show that by introducing small fluctuations to the scalar field ##\phi##.


\begin{equation*}
\phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x)
\end{equation*}


as well as defining ##\chi := a\delta \phi##, the action becomes


\begin{equation*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)

\end{equation*}
Relevant Equations
N/A
I simply plugged \phi = \phi_0 (\eta) + \delta \phi (\eta, \vec x) into the given action to get

\begin{align}
S &= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi^2 -(\nabla \phi)^2\right)-a^4V(\phi) \right] \nonumber \\
&= \int d^4 x \left[ \frac{a^2}{2}\left(\dot \phi_0^2 + (\delta \dot \phi)^2 + 2\dot \phi_0 \delta \dot \phi- (\nabla (\delta \phi))^2 \right)-a^4V(\phi_0) -a^4V(\delta \phi) \right] \\
&= \int d^4 x \left[ \underbrace{\frac{a^2}{2} \dot \phi_0^2 + a^2\dot \phi_0 \delta \dot \phi -a^4V(\phi_0)}_{S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right]
\end{align}
However, I am stuck in how to show that

\begin{equation*}
\int d^4 x \left[ \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla (\delta \phi))^2 -a^4V(\delta \phi) \right] = \frac{1}{2} \int d^4 x \left( \dot \chi^2 - (\nabla \chi)^2 + \frac{\ddot a}{a} \chi^2 \right)
\end{equation*}

I am convinced we'll have to use integration by parts and let the surface term vanish but I do not see how to do so...

Any help is appreciated.

Thank you :biggrin:

This doubt emerged while studying the lecture notes of my course. I attach the relevant pages

LecNotes0.png

LecNotes1.png

LecNotes2.png
 
Physics news on Phys.org
Hey JD, did you ever figure out how to get the answer? I was just trying to do it now but got stuck as well. So far I'd just written ##V(\phi) = V(\phi_0) + \delta \phi V'(\phi_0)## and then\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\

&= S[\phi_0] + \int d^4 x [ a^2 \dot{\phi}_0 \left( \frac{\dot{\chi}}{a} - \frac{\dot{a} \chi}{a^2} \right) + \frac{a^2}{2} \left(\frac{\dot{\chi}^2}{a^2} - \frac{2\dot{a} \dot{\chi} \chi}{a^3} + \frac{\dot{a}^2 \chi^2}{a^4} \right) -a \nabla \phi_0 \cdot \nabla \chi \\

&\quad \quad \quad \quad \quad - \frac{1}{2} (\nabla \chi)^2 -a^4 \delta \phi V'(\phi_0)] \\

&= S[\phi_0] + \frac{1}{2} d^4 x \left[ \dot{\chi}^2 - (\nabla \chi)^2 + \underbrace{2a \dot{\phi}_0 \dot{\chi} + 2a \chi \ddot{\phi}_0 - \frac{2\dot{a} \dot{\chi} \chi}{a} + \frac{\dot{a}^2 \chi^2}{a^2} - 2a \nabla \phi_0 \cdot \nabla \chi} \right]
\end{align*}
in the last line I used that ##-a^2 V'(\phi_0) = \ddot{\phi}_0 + \frac{2\dot{a}}{a} \dot{\phi}_0##. But I'm at a loss about how to proceed :frown:
 
Last edited by a moderator:
  • Like
Likes JD_PM and Delta2
Hey James! Nice to see you taking the problem :biggrin:

etotheipi said:
\begin{align*}
S &= S[\phi_0] + \int d^4 x \left[ \frac{a^2}{2} \left( 2\dot{\phi}_0 \delta \dot{\phi} + \delta \dot{\phi}^2 -2 \nabla \phi_0 \cdot \nabla \delta \phi - (\nabla \delta \phi)^2 \right) - a^4 \delta \phi V'(\phi_0)\right] \\
\end{align*}

Notice that we are dealing with a homogeneous scalar field i.e. ##\partial_i \phi = 0## so the term ##2 \nabla \phi_0 \cdot \nabla \delta \phi## drops. Hence you'll agree with me that we start off by

\begin{equation*}
S=\int d^4 x \left( \underbrace{\frac{a^2}{2} \dot \phi_0^2 - a^4V(\phi_0)}_{= S[\phi_0]} + \frac{a^2}{2}(\delta \dot \phi)^2 - \frac{a^2}{2}(\nabla \delta \phi)^2 +a^2\dot \phi_0 \delta \dot \phi - a^4 \delta \phi V'(\phi_0) \right)
\end{equation*}

To advance, you will need to work out the term ##\delta \phi## based on change of variables (39) in the attached pic. If it goes smooth you will find

\begin{align*}
S &= S[\phi_0] \nonumber \\
&+ \int d^4 \vec x \left[\frac{1}{2} \left( \dot \chi^2 - 2\frac{\dot a \chi \dot \chi}{a} + \frac{\dot a^2}{a^2} \chi^2 \right) -\frac 1 2 (\nabla \chi)^2 + a^2 \dot \phi_0 \delta \dot \phi - a^4\delta \phi V'(\phi_0)\right]
\end{align*}

Once we get here we will carry on :smile:
 
Yes these results are in agreement if ##2 \nabla \phi_0 \cdot \nabla \delta \phi = 0##, because if you substitute this term\begin{align*}
a^2 \dot{\phi}_0 \delta \dot{\phi} - a^4 \delta \phi V'(\phi) &= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a^2 \delta \phi \ddot{\phi}_0 + 2a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= a \dot{\chi} \dot{\phi}_0 - \dot{a} \dot{\phi}_0 \chi + \left[ a \chi \ddot{\phi}_0 + \dot{a} \dot{\phi}_0 \chi \right] \\

&= a \dot{\chi} \dot{\phi}_0 + a \chi \ddot{\phi}_0

\end{align*}in your final expression, then you end up with my expression at the end of #2. :smile:
 
Good! At this point we notice that we already have 2 of the 3 terms in the desired final form. All we need to do is simplify.

Try to integrate by parts (IBP¨) the ##2\frac{\dot a \chi \dot \chi}{a}## term. Your action should simplify slightly. Then make use of the E.O.M. (37). Finally you will have to use IBP once again to get the final simplified action :)
 
Write\begin{align*}

-\int d^3 x d\eta \frac{2\dot{a}\chi \dot{\chi}}{a} &= - \int d^3 x d\eta \frac{\dot{a}}{a} \frac{d}{d\eta} \left( \chi^2 \right) \\

&= -\int d^3 x d\eta \left[ \frac{d}{d\eta} \left( \frac{\dot{a}}{a} \chi^2 \right) - \chi^2 \left( \frac{a\ddot{a} - \dot{a}^2}{a^2} \right) \right] \\

&= \phantom{-} \int d^3 x d\eta \left( \frac{\ddot{a}}{a} \chi^2 - \frac{\dot{a}^2}{a^2} \chi^2 \right)

\end{align*}where the boundary term was thrown away. The expression becomes\begin{align*}

S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 + 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right]

\end{align*}Now use equation ##(37)## to re-write ##2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi = -2a^4 \delta \phi V'(\phi_0)##, such that\begin{align*}
\int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi - 2a^4\delta \phi V'(\phi_0)\right] &= \int d^4 x \left[ 2a^2 \dot \phi_0 \delta \dot \phi +2a^2 \ddot{\phi}_0 \delta \phi + 4a \dot{a} \dot{\phi}_0 \delta \phi \right] \\

&= \int d^3 x d\eta \left[ \frac{d}{d\eta} \left( 2a^2 \dot{\phi}_0 \delta \phi \right)\right] \\

&=0

\end{align*}again neglecting the boundary term. Hence\begin{align*}
S = S[\phi_0] + \frac{1}{2} \int d^4 x \left[ \dot \chi^2 + \frac{\ddot a}{a} \chi^2 -(\nabla \chi)^2 \right]
\end{align*}:smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top