Hi There Everyone(adsbygoogle = window.adsbygoogle || []).push({});

I am studying undergraduate calculus in first year. My question regards the rules for identifying a limit sum as a Riemann sum and therefore a definite integral. The book we are using says that when choosing [tex] \inline \large c_{i} [/tex] for some [tex] f(x) [/tex], if [tex] \inline \large x_{i - 1} < c_{i} < x_{i} [/tex], then the sum is indeed a Riemann sum for [tex] f(x) [/tex] over an interval.

Allow me to include an example afterwhich I will pose my question in clarity.

========================

Express the limit [tex] \lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left( 1 + \frac{2i - 1}{n}\right)^{1/3} [/tex] as a definite integral

Solution:

We want to interpret the sum as a Riemann sum for [tex] f(x)=(1+x)^{1/3} [/tex]. The factor 2/n suggests that the interval of integration has length 2 and is partitioned into n equal subintervals, each of length 2/n. Let [tex] \inline \large c_{i} = (2i - 1)/n [/tex] for i = 1, 2, 3, ..., n. As [tex] n \to \infty, c_{1} = 1/n \to 0 [/tex] and [tex] c_{n} = (2n -1)n \to 2 [/tex]. Thus, the interval is [0, 2], and the points of the partition are [tex] x_{i} = 2i/n [/tex]. Observe that [tex] x_{i-1} = (2i-2)/n < c_{i} < 2i/n = x_{i}[/tex] for each i, so that the sum is indeed a Riemann sum for [tex] f(x) [/tex] over [0, 2]. Since f is continuous on that interval, it is integrable there, and

[tex] \lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left( 1 + \frac{2i - 1}{n}\right)^{1/3} = \int_{0}^{2} (1+x)^{1/3} dx[/tex]

==========================

My question is, is it necessary for the condition [tex] x_{i-1} = (2i-2)/n < c_{i} < 2i/n = x_{i}[/tex] be met for the sum to be converted to a definite integral. The reason I ask is that as [tex] n \to \infty [/tex] adding or subtracting any constant from the index does not change the sum at infinity in any case because if we choose [tex] c_{i} = (2i- 20000000)/n [/tex] the big number vanishes when [tex] n \to \infty [/tex] so that the sum is the same what ever the big number is. But then [tex] x_{i-1} = (2i-2)/n < c_{i} < 2i/n = x_{i}[/tex] is no longer true and by the definition of a Riemann sum, [tex] c_{i} [/tex] must lie with in the subinterval [tex] [x_{i-1}, x_{i} ][/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Riemann Integral Identification from Sum

Loading...

Similar Threads for Riemann Integral Identification |
---|

I How to derive this log related integration formula? |

I An integration Solution |

B I Feel Weird Using Integral Tables |

I Video (analytic continuation) seems to mix 4-D & 2-D maps |

I N-th dimensional Riemann integral |

**Physics Forums | Science Articles, Homework Help, Discussion**