- #1
- 2
- 0
Hey all,
Say you have a slab sitting vertically(like a door) at rest on a frictionless surface. If you push with a horizontal force somewhere near the top(as long as it is above the center of mass), would the slab rotate(tip over)?
My friend and I were originally thinking of how much horizontal force you would have to push a block with to tip it over on a surface with friction. This turned into a question of whether or not you actually could tip a block if it was on a frictionless surface. We both said no, but then we thought about if you replaced the block with a door and it made us think twice.
Right now we are leaning towards the object rotating, or tipping over, but we aren't completely sure and would like some more input on the problem. Does it depend on the weight of the object? Does it depend on how much force you apply? Does it depend on where you apply the force?
Also, we are saying the body is rigid. We have tried to break it down into a simpler model, with no avail. Hopefully you guys can help.
Thanks
Say you have a slab sitting vertically(like a door) at rest on a frictionless surface. If you push with a horizontal force somewhere near the top(as long as it is above the center of mass), would the slab rotate(tip over)?
My friend and I were originally thinking of how much horizontal force you would have to push a block with to tip it over on a surface with friction. This turned into a question of whether or not you actually could tip a block if it was on a frictionless surface. We both said no, but then we thought about if you replaced the block with a door and it made us think twice.
Right now we are leaning towards the object rotating, or tipping over, but we aren't completely sure and would like some more input on the problem. Does it depend on the weight of the object? Does it depend on how much force you apply? Does it depend on where you apply the force?
Also, we are saying the body is rigid. We have tried to break it down into a simpler model, with no avail. Hopefully you guys can help.
Thanks