A Rotation matrix and rotation of coordinate system

AI Thread Summary
Changing the orientation of a coordinate system involves using a rotation matrix, represented as x' = Ax, where A is defined by specific trigonometric functions of the Euler angles. The matrix A is orthogonal with a determinant of +1, confirming it functions as a rotation matrix that rotates vectors. When A indicates a clockwise rotation by an angle α, it implies that the coordinate system itself has rotated anticlockwise by the same angle. This relationship highlights the concepts of active and passive transformations in coordinate systems. Understanding these transformations is crucial for applications in physics and engineering.
Kashmir
Messages
466
Reaction score
74
1636699937311.png


If we change the orientation of a coordinate system as shown above, (the standard eluer angles , ##x_1y_1z_1## the initial configuration and ##x_by _b z_b## the final one), then the formula for the coordinates of a vector in the new system is given by

##x'=Ax##
where ##A=\left[\begin{array}{ccc}\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\ -\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \cdot \sin \theta \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta\end{array}\right]##

We observe that the matrix is orthogonal with determinant ##+1## so it's a rotation matrix.
So its effect is to rotate a vector,hence ##x'## will be nothing but ##x## rotated.

So if ##A## represents a clockwise rotation of vectors by ##α## cannot I say that actually the coordinate system has rotated anticlockwise by the same amount ##α##?
 
Physics news on Phys.org
Filip Larsen said:
In short, yes. For a bit more details search for the concept of active and passive transformations.
thank you so much :) .
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top