A Rotation matrix and rotation of coordinate system

AI Thread Summary
Changing the orientation of a coordinate system involves using a rotation matrix, represented as x' = Ax, where A is defined by specific trigonometric functions of the Euler angles. The matrix A is orthogonal with a determinant of +1, confirming it functions as a rotation matrix that rotates vectors. When A indicates a clockwise rotation by an angle α, it implies that the coordinate system itself has rotated anticlockwise by the same angle. This relationship highlights the concepts of active and passive transformations in coordinate systems. Understanding these transformations is crucial for applications in physics and engineering.
Kashmir
Messages
466
Reaction score
74
1636699937311.png


If we change the orientation of a coordinate system as shown above, (the standard eluer angles , ##x_1y_1z_1## the initial configuration and ##x_by _b z_b## the final one), then the formula for the coordinates of a vector in the new system is given by

##x'=Ax##
where ##A=\left[\begin{array}{ccc}\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\ -\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \cdot \sin \theta \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta\end{array}\right]##

We observe that the matrix is orthogonal with determinant ##+1## so it's a rotation matrix.
So its effect is to rotate a vector,hence ##x'## will be nothing but ##x## rotated.

So if ##A## represents a clockwise rotation of vectors by ##α## cannot I say that actually the coordinate system has rotated anticlockwise by the same amount ##α##?
 
Physics news on Phys.org
Filip Larsen said:
In short, yes. For a bit more details search for the concept of active and passive transformations.
thank you so much :) .
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top